Skip to main content

Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular Disease: Exercise as Medicine

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 999))

Abstract

Leisure time physical activity, or exercise, has been described as today’s best buy in public health. Physical inactivity is responsible for around 10% of all deaths and physical inactivity costs global healthcare systems billions of dollars each year. Here, we describe the human and economic costs of cardiovascular disease. Then, we explain that physical inactivity is a major modifiable risk factor for cardiovascular disease. The evidence of the role of physical activity in the primary prevention of cardiovascular disease is reviewed and we make the case that exercise is medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Townsend N, Wilson L, Bhatnagar P et al (2016) Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J 37(42):3232–3245

    Article  PubMed  Google Scholar 

  2. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  CAS  PubMed  Google Scholar 

  3. Luengo-Fernandez R, Leal J, Gray A et al (2006) Cost of cardiovascular diseases in the United Kingdom. Heart 92(10):1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organisation (2012) Health statistics and information systems. Estimates for 2000–2012 disease burden. http://wwwwhoint/healthinfo/global_burden_disease/estimates/en/index2html. Accessed Jan 2017

  5. Nichols M, Townsend N, Luengo-Fernandez R et al (2012) European cardiovascular disease statistics 2012. European Heart Network/European Society of Cardiology, Brussels/Sophia Antipolis

    Google Scholar 

  6. Emberson JR, Whincup PH, Morris RW et al (2003) Re-assessing the contribution of serum total cholesterol, blood pressure and cigarette smoking to the aetiology of coronary heart disease: impact of regression dilution bias. Eur Heart J 24(19):1719–1726

    Article  CAS  PubMed  Google Scholar 

  7. Pilote L, Dasgupta K, Guru V et al (2007) A comprehensive view of sex-specific issues related to cardiovascular disease. CMAJ 176(6):S1–44

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee IM, Shiroma EJ, Lobelo F et al (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–229

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hardoon SL, Whincup PH, Lennon LT et al (2008) How much of the recent decline in the incidence of myocardial infarction in British men can be explained by changes in cardiovascular risk factors? Evidence from a prospective population-based study. Circulation 117(5):598–604

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lewington S, Whitlock G, Clarke R et al (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370(9602):1829–1839

    Article  PubMed  Google Scholar 

  11. Baigent C, Keech A, Kearney PM et al (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493):1267–1278

    Article  CAS  PubMed  Google Scholar 

  12. Juster HR, Loomis BR, Hinman TM et al (2007) Declines in hospital admissions for acute myocardial infarction in New York state after implementation of a comprehensive smoking ban. Am J Public Health 97(11):2035–2039

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fox KR, Hillsdon M (2007) Physical activity and obesity. Obes Rev 8 Suppl 1(s1):115–121

    Article  Google Scholar 

  14. Wareham N (2007) Physical activity and obesity prevention. Obes Rev 8 Suppl 1(s1):109–114

    Article  Google Scholar 

  15. Ding D, Lawson KD, Kolbe-Alexander TL et al (2016) The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 388(10051):1311–1324

    Article  PubMed  Google Scholar 

  16. Das P, Horton R (2016) Physical activity-time to take it seriously and regularly. Lancet 388(10051):1254–1255

    Article  PubMed  Google Scholar 

  17. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113(19):2335–2362

    Article  PubMed  Google Scholar 

  18. Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall inflammation. Circ Res 89(9):763–771

    Article  CAS  PubMed  Google Scholar 

  19. Danesh J, Lewington S, Thompson SG et al (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294(14):1799–1809

    CAS  PubMed  Google Scholar 

  20. Danesh J, Wheeler JG, Hirschfield GM et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350(14):1387–1397

    Article  CAS  PubMed  Google Scholar 

  21. Tzoulaki I, Murray GD, Lee AJ et al (2007) Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation 115(16):2119–2127

    Article  PubMed  Google Scholar 

  22. Mora S, Cook N, Buring JE et al (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116(19):2110–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lange LA, Carlson CS, Hindorff LA et al (2006) Association of polymorphisms in the CRP gene with circulating C-reactive protein levels and cardiovascular events. JAMA 296(22):2703–2711

    Article  CAS  PubMed  Google Scholar 

  24. Sattar N, Wannamethee G, Sarwar N et al (2006) Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114(7):623–629

    Article  CAS  PubMed  Google Scholar 

  25. Thompson A, Danesh J (2006) Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: a literature-based meta-analysis of prospective studies. J Intern Med 259(5):481–492

    Article  CAS  PubMed  Google Scholar 

  26. Stamler J (1995) Established major coronary risk factors. In: Marmot M, Elliott P (eds) Coronary heart disease epidemiology. Oxford University Press, Oxford

    Google Scholar 

  27. Morris JN, Heady JA, Raffle PA et al (1953) Coronary heart-disease and physical activity of work. Lancet 265(6796):1111–1120

    Article  CAS  PubMed  Google Scholar 

  28. Paffenbarger RS Jr, Wing AL, Hyde RT (1978) Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol 108(3):161–175

    Article  PubMed  Google Scholar 

  29. Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to coronary heart disease in men. JAMA 288(16):1994–2000

    Article  PubMed  Google Scholar 

  30. Ekelund U, Steene-Johannessen J, Brown WJ et al (2016) Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 388(10051):1302–1310

    Article  PubMed  Google Scholar 

  31. Eyler AA, Matson-Koffman D, Rohm Young D et al (2003) Quantitative study of correlates of physical activity in women from diverse racial/ethnic groups: Women’s cardiovascular health network project–introduction and methodology. Am J Prev Med 25(3 Suppl 1):5–14

    Article  PubMed  Google Scholar 

  32. Manson JE, Greenland P, LaCroix AZ et al (2002) Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med 347(10):716–725

    Article  PubMed  Google Scholar 

  33. Manson JE, Hu FB, Rich-Edwards JW et al (1999) A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med 341(9):650–658

    Article  CAS  PubMed  Google Scholar 

  34. Lee IM, Rexrode KM, Cook NR et al (2001) Physical activity and coronary heart disease in women: is “no pain, no gain” passe? JAMA 285(11):1447–1454

    Article  CAS  PubMed  Google Scholar 

  35. Oguma Y, Shinoda-Tagawa T (2004) Physical activity decreases cardiovascular disease risk in women: review and meta-analysis. Am J Prev Med 26(5):407–418

    Article  PubMed  Google Scholar 

  36. Lee IM, Paffenbarger RS Jr (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard Alumni Health Study. Am J Epidemiol 151(3):293–299

    Article  CAS  PubMed  Google Scholar 

  37. Tanasescu M, Leitzmann MF, Rimm EB et al (2003) Physical activity in relation to cardiovascular disease and total mortality among men with type 2 diabetes. Circulation 107(19):2435–2439

    Article  PubMed  Google Scholar 

  38. Wisloff U, Nilsen TI, Droyvold WB et al (2006) A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. Eur J Cardiovasc Prev Rehabil 13(5):798–804

    Article  PubMed  Google Scholar 

  39. Noda H, Iso H, Toyoshima H et al (2005) Walking and sports participation and mortality from coronary heart disease and stroke. J Am Coll Cardiol 46(9):1761–1767

    Article  PubMed  Google Scholar 

  40. Kujala UM, Kaprio J, Sarna S et al (1998) Relationship of leisure-time physical activity and mortality: the Finnish twin cohort. JAMA 279(6):440–444

    Article  CAS  PubMed  Google Scholar 

  41. Hamer M, Chida Y (2008) Walking and primary prevention: a meta-analysis of prospective cohort studies. Br J Sports Med 42(4):238–243

    Article  CAS  PubMed  Google Scholar 

  42. Samitz G, Egger M, Zwahlen M (2011) Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol 40(5):1382–1400

    Article  PubMed  Google Scholar 

  43. Bouchard C, Blair SN, Katzmarzyk PT (2015) Less sitting, more physical activity, or higher fitness? Mayo Clin Proc 90(11):1533–1540

    Article  PubMed  Google Scholar 

  44. Wen CP, Wai JP, Tsai MK et al (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253

    Article  PubMed  Google Scholar 

  45. Hupin D, Roche F, Gremeaux V et al (2015) Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged >/=60 years: a systematic review and meta-analysis. Br J Sports Med 49(19):1262–1267

    Article  PubMed  Google Scholar 

  46. Arem H, Moore SC, Patel A et al (2015) Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med 175(6):959–967

    Article  PubMed  PubMed Central  Google Scholar 

  47. O’Donovan G, Lee IM, Hamer M et al (2017) Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern Med 177(3):335–342

    Article  PubMed  Google Scholar 

  48. Ross R, Blair SN, Arena R et al (2016) Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134(24):e653–e699

    Article  PubMed  Google Scholar 

  49. Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pescatello LS, Guidry MA, Blanchard BE et al (2004) Exercise intensity alters postexercise hypotension. J Hypertens 22(10):1881–1888

    Article  CAS  PubMed  Google Scholar 

  51. Quinn TJ (2000) Twenty-four hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. J Hum Hypertens 14(9):547–553

    Article  CAS  PubMed  Google Scholar 

  52. Park S, Rink LD, Wallace JP (2006) Accumulation of physical activity leads to a greater blood pressure reduction than a single continuous session, in prehypertension. J Hypertens 24(9):1761–1770

    Article  CAS  PubMed  Google Scholar 

  53. Durstine JL, Grandjean PW, Davis PG et al (2001) Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 31(15):1033–1062

    Article  CAS  PubMed  Google Scholar 

  54. Kodama S, Tanaka S, Saito K et al (2007) Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167(10):999–1008

    Article  CAS  PubMed  Google Scholar 

  55. Duncan GE, Anton SD, Sydeman SJ et al (2005) Prescribing exercise at varied levels of intensity and frequency: a randomized trial. Arch Intern Med 165(20):2362–2369

    Article  PubMed  Google Scholar 

  56. Leon AS, Sanchez OA (2001) Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc 33(6):S502–S515

    Article  CAS  PubMed  Google Scholar 

  57. Kelley GA, Kelley KS, Vu Tran Z (2005) Aerobic exercise, lipids and lipoproteins in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Obes 29(8):881–893

    Article  CAS  Google Scholar 

  58. Williams PT, Blanche PJ, Krauss RM (2005) Behavioral versus genetic correlates of lipoproteins and adiposity in identical twins discordant for exercise. Circulation 112(3):350–356

    Article  CAS  PubMed  Google Scholar 

  59. An P, Borecki IB, Rankinen T et al (2005) Evidence of major genes for plasma HDL, LDL cholesterol and triglyceride levels at baseline and in response to 20 weeks of endurance training: the HERITAGE family study. Int J Sports Med 26(6):414–419

    Article  CAS  PubMed  Google Scholar 

  60. Leon AS, Gaskill SE, Rice T et al (2002) Variability in the response of HDL cholesterol to exercise training in the HERITAGE family study. Int J Sports Med 23(1):1–9

    Article  CAS  PubMed  Google Scholar 

  61. Karpe F (1999) Postprandial lipoprotein metabolism and atherosclerosis. J Intern Med 246(4):341–355

    Article  CAS  PubMed  Google Scholar 

  62. Gill JM, Hardman AE (2003) Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review). J Nutr Biochem 14(3):122–132

    Article  CAS  PubMed  Google Scholar 

  63. Blair SN, Kampert JB, Kohl HW 3rd et al (1996) Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276(3):205–210

    Article  CAS  PubMed  Google Scholar 

  64. Mora S, Redberg RF, Cui Y et al (2003) Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA 290(12):1600–1607

    Article  CAS  PubMed  Google Scholar 

  65. Kokkinos P, Myers J, Kokkinos JP et al (2008) Exercise capacity and mortality in black and white men. Circulation 117(5):614–622

    Article  PubMed  Google Scholar 

  66. Blair SN, Cheng Y, Holder JS (2001) Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc 33(6 Suppl):S379–S399

    Article  CAS  PubMed  Google Scholar 

  67. Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3(5):346–356

    Article  CAS  PubMed  Google Scholar 

  68. Church TS, Earnest CP, Skinner JS et al (2007) Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA 297(19):2081–2091

    Article  CAS  PubMed  Google Scholar 

  69. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S (2004) Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med 34(3):181–200

    Article  PubMed  Google Scholar 

  70. Wang JS, Chow SE, Chen JK (2003) Strenuous, acute exercise affects reciprocal modulation of platelet and polymorphonuclear leukocyte activities under shear flow in men. J Thromb Haemost 1(9):2031–2037

    Article  CAS  PubMed  Google Scholar 

  71. Kestin AS, Ellis PA, Barnard MR et al (1993) Effect of strenuous exercise on platelet activation state and reactivity. Circulation 88(4 Pt 1):1502–1511

    Article  CAS  PubMed  Google Scholar 

  72. Albert CM, Mittleman MA, Chae CU et al (2000) Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med 343(19):1355–1361

    Article  CAS  PubMed  Google Scholar 

  73. Ford ES (2002) Does exercise reduce inflammation? Physical activity and C- reactive protein among US adults. Epidemiology 13(5):561–568

    Article  PubMed  Google Scholar 

  74. Rauramaa R, Li G, Vaisanen SB (2001) Dose-response and coagulation and hemostatic factors. Med Sci Sports Exerc 33(6 Suppl):S516–S520; discussion S528–519

    Article  CAS  PubMed  Google Scholar 

  75. Wannamethee SG, Lowe GD, Whincup PH et al (2002) Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 105(15):1785–1790

    Article  PubMed  Google Scholar 

  76. Wang JS, Jen CJ, Chen HI (1995) Effects of exercise training and deconditioning on platelet function in men. Arterioscler Thromb Vasc Biol 15(10):1668–1674

    Article  CAS  PubMed  Google Scholar 

  77. Wang JS, Jen CJ, Chen HI (1997) Effects of chronic exercise and deconditioning on platelet function in women. J Appl Physiol 83(6):2080–2085

    CAS  PubMed  Google Scholar 

  78. Wang JS, Li YS, Chen JC et al (2005) Effects of exercise training and deconditioning on platelet aggregation induced by alternating shear stress in men. Arterioscler Thromb Vasc Biol 25(2):454–460

    Article  PubMed  Google Scholar 

  79. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S (2004) Exercise and training effects on blood haemostasis in health and disease. Sports Med 34(3):181–200

    Article  PubMed  Google Scholar 

  80. Hammett CJ, Prapavessis H, Baldi JC et al (2006) Effects of exercise training on 5 inflammatory markers associated with cardiovascular risk. Am Heart J 151(2):367.e7–367.e16

    Article  CAS  Google Scholar 

  81. Esposito K, Pontillo A, Di Palo C et al (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289(14):1799–1804

    Article  CAS  PubMed  Google Scholar 

  82. Huffman KM, Samsa GP, Slentz CA et al (2006) Response of high-sensitivity C-reactive protein to exercise training in an at-risk population. Am Heart J 152(4):793–800

    Article  CAS  PubMed  Google Scholar 

  83. Lakka TA, Lakka HM, Rankinen T et al (2005) Effect of exercise training on plasma levels of C-reactive protein in healthy adults: the HERITAGE family study. Eur Heart J 26(19):2018–2025

    Article  CAS  PubMed  Google Scholar 

  84. Pescatello LS, Franklin BA, Fagard R et al (2004) American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36(3):533–553

    Article  PubMed  Google Scholar 

  85. Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122(12):1221–1238

    Article  PubMed  Google Scholar 

  86. Ferguson MA, Alderson NL, Trost SG et al (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85(3):1169–1174

    CAS  PubMed  Google Scholar 

  87. Seip RL, Moulin P, Cocke T et al (1993) Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb 13(9):1359–1367

    Article  CAS  PubMed  Google Scholar 

  88. Stewart LK, Flynn MG, Campbell WW et al (2005) Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun 19(5):389–397

    Article  CAS  PubMed  Google Scholar 

  89. Mundstock E, Zatti H, Louzada FM et al (2015) Effects of physical activity in telomere length: systematic review and meta-analysis. Ageing Res Rev 22:72–80

    Article  CAS  PubMed  Google Scholar 

  90. Xiao Q, Moore SC, Keadle SK et al (2016) Objectively measured physical activity and plasma metabolomics in the shanghai physical activity study. Int J Epidemiol 45(5):1433–1444

    Article  PubMed  PubMed Central  Google Scholar 

  91. Morris JN (1994) Exercise in the prevention of coronary heart disease: today’s best buy in public health. Med Sci Sports Exerc 26(7):807–814

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Hamer acknowledges support from the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, which is a partnership between University Hospitals of Leicester NHS Trust, Loughborough University and the University of Leicester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hamer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hamer, M., O’Donovan, G., Murphy, M. (2017). Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular Disease: Exercise as Medicine. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_1

Download citation

Publish with us

Policies and ethics