Skip to main content

The Positive Effects of Exercise in Chemotherapy-Related Cardiomyopathy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1000))

Abstract

Anthracyclines such as doxorubicin, daunorubicin, epirubicin, mitoxantrone and idarubicin, are powerful chemotherapeutic drugs used both in children and adult populations. Their properties made them particularly suitable for a large variety of neoplasms including breast adenocarcinoma, small cell lung cancer and acute leukemia. Early and late anthracycline-induced cardiotoxicity is a well-known phenomenon, and the incidence of heart failure in patients receiving doxorubicin is 2.2%, with a mortality rate over 60% at 2 years. Prognosis can be improved by prevention, early detection and treatment. A specific treatment for anthracycline-induced cardiotoxicity is not yet available, but non-pharmacological measures such as exercise, lifestyle changes and control of risk factors have shown a cardioprotective effect. Exercise training represents a viable non-pharmacological treatment as it increases cardiovascular reserve and endothelial function, regulates proapoptotic signaling, protects against reactive oxygen species (ROS), and decreases autophagy/lysosomal signaling. However, no current guidelines are available for prevention management in cancer patients. Pharmacological measures both for prevention and treatment are those used for heart failure (β-blockers, angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, statins, dexrazoxane and aldosteron antagonists). In this chapter, we will discuss how the evaluation, monitoring and prevention of chemotherapy-related cardiomyopathy is correlated with physical exercise.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-4304-8_20

Giacomo Frati and Mariangela Peruzzi are joint last authors.

This is a preview of subscription content, log in via an institution.

References

  1. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mariotto AB, Yabroff KR, Shao Y et al (2011) Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst 103(2):117–128

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oliveira GH, Hardaway BW, Kucheryavaya AY et al (2012) Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant 31(8):805–810

    Article  PubMed  Google Scholar 

  4. Adão R, de Keulenaer G, Leite-Moreira A et al (2013) Cardiotoxicity associated with cancer therapy: pathophysiology and prevention strategies. Rev Port Cardiol 32(5):395–409

    PubMed  Google Scholar 

  5. Saidi A, Alharethi R (2011) Management of chemotherapy induced cardiomyopathy. Curr Cardiol Rev 7(4):245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Octavia Y, Tocchetti CG, Gabrielson KL et al (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52(6):1213–1225

    Article  CAS  PubMed  Google Scholar 

  7. Tokarska-Schlattner M, Zaugg M, da Silva R et al (2005) Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol 289(1):H37–H47

    Article  CAS  PubMed  Google Scholar 

  8. Lim CC, Zuppinger C, Guo X et al (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279(9):8290–8299

    Article  CAS  PubMed  Google Scholar 

  9. De Angelis A, Piegari E, Cappetta D et al (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121(2):276–292

    Article  PubMed  CAS  Google Scholar 

  10. Kouzi SA, Uddin MN (2016) Aerobic exercise training as a potential cardioprotective strategy to attenuate doxorubicin-induced cardiotoxicity. J Pharm Pharm Sci 19(3):399–410

    Article  PubMed  Google Scholar 

  11. Curigliano G, Cardinale D, Dent S et al (2016) Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin 66(4):309–325

    Article  PubMed  Google Scholar 

  12. Ewer MS, Ewer SM (2015) Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 12(9):547–558

    Article  CAS  PubMed  Google Scholar 

  13. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    Article  CAS  PubMed  Google Scholar 

  14. Damiani RM, Moura DJ, Viau CM et al (2016) Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 90(9):2063–2076

    Article  CAS  PubMed  Google Scholar 

  15. Jawa Z, Perez RM, Garlie L et al (2016) Risk factors of trastuzumab-induced cardiotoxicity in breast cancer: a meta-analysis. Medicine (Baltimore) 95(44):e5195

    Article  CAS  Google Scholar 

  16. Nousiainen T, Jantunen E, Vanninen E et al (2002) Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 86(11):1697–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lancellotti P, Anker SD, Donal E et al (2015) EACVI/HFA cardiac oncology toxicity registry in breast cancer patients: rationale, study design, and methodology (EACVI/HFA COT Registry) – EURObservational research program of the European society of cardiology. Eur Heart J Cardiovasc Imaging 16(5):466–470

    Article  PubMed  Google Scholar 

  18. Li DL, Hill JA (2014) Cardiomyocyte autophagy and cancer chemotherapy. J Mol Cell Cardiol 71(6):54–61

    Article  CAS  PubMed  Google Scholar 

  19. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879

    Article  CAS  PubMed  Google Scholar 

  20. Sawyer DB, Peng X, Chen B et al (2010) Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53(2):105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, McLaughlin D, Robinson E et al (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res 70(22):9287–9297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Falco E, Carnevale R, Pagano F et al (2016) Role of NOX2 in mediating doxorubicin-induced senescence in human endothelial progenitor cells. Mech Ageing Dev 159:37–43

    Article  PubMed  CAS  Google Scholar 

  23. Carnevale R, Biondi-Zoccai G, Peruzzi M et al (2014) New insights into the steen solution properties: breakthrough in antioxidant effects via NOX2 downregulation. Oxidative Med Cell Longev 2014(7):242180

    Google Scholar 

  24. Dresdale AR, Barr LH, Bonow RO et al (1982) Prospective randomized study of the role of N-acetyl cysteine in reversing doxorubicin-induced cardiomyopathy. Am J Clin Oncol 5(6):657–663

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Liu X, Bawa-Khalfe T et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642

    Article  PubMed  CAS  Google Scholar 

  26. Vejpongsa P, Yeh ET (2014) Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther 95(1):45–52

    Article  CAS  PubMed  Google Scholar 

  27. Lyu YL, Kerrigan JE, Lin CP et al (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67(18):8839–8846

    Article  CAS  PubMed  Google Scholar 

  28. Vejpongsa P, Yeh ET (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64(9):938–945

    Article  CAS  PubMed  Google Scholar 

  29. Ikeda Y, Sciarretta S, Nagarajan N et al (2014) New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxidative Med Cell Longev 2014:210934

    Article  CAS  Google Scholar 

  30. Bartlett JJ, Trivedi PC, Pulinilkunnil T (2017) Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol 104:1–8

    Article  CAS  PubMed  Google Scholar 

  31. Sciarretta S, Zhai P, Maejima Y et al (2015) mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep 11(1):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li DL, Wang ZV, Ding G et al (2016) Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation 133(17):1668–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bartlett JJ, Trivedi PC, Yeung P et al (2016) Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J 473(21):3769–3789

    Article  CAS  PubMed  Google Scholar 

  34. Condorelli G, Latronico MV, Cavarretta E (2014) microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63(21):2177–2187

    Article  CAS  PubMed  Google Scholar 

  35. Cavarretta E, Frati G (2016) MicroRNAs in coronary heart disease: ready to enter the clinical arena? Biomed Res Int 2016:2150763

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cavarretta E, Chiariello GA, Condorelli G (2013) Platelets, endothelium, and circulating microRNA-126 as a prognostic biomarker in cardiovascular diseases: per aspirin ad astra. Eur Heart J 34(44):3400–3402

    Article  PubMed  Google Scholar 

  37. Roncarati R, Viviani Anselmi C, Losi MA et al (2014) Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 63(9):920–927

    Article  CAS  PubMed  Google Scholar 

  38. Cavarretta E, Condorelli G (2015) miR-21 and cardiac fibrosis: another brick in the wall? Eur Heart J 36(32):2139–2141

    Article  CAS  PubMed  Google Scholar 

  39. Cavarretta E, Latronico MV, Condorelli G (2012) Endothelial-to-mesenchymal transition and microRNA-21: the game is on again. Arterioscler Thromb Vasc Biol 32(2):165–166

    Article  CAS  PubMed  Google Scholar 

  40. Horie T, Ono K, Nishi H et al (2010) Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 87(4):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vacchi-Suzzi C, Bauer Y, Berridge BR et al (2012) Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One 7(7):e40395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roca-Alonso L, Castellano L, Mills A et al (2015) Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis 6:e1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Communal C, Singh K, Pimentel DR et al (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98(13):1329–1334

    Article  CAS  PubMed  Google Scholar 

  44. Chimenti I, Pagano F, Cavarretta E et al (2016) Β-blockers treatment of cardiac surgery patients enhances isolation and improves phenotype of cardiosphere-derived cells. Sci Rep 6:36774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang J, Cui X, Yan Y et al (2016) Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am J Transl Res 8(7):2862–2875

    PubMed  PubMed Central  Google Scholar 

  46. Lotrionte M, Palazzoni G, Abbate A et al (2013) Cardiotoxicity of a non-pegylated liposomal doxorubicin-based regimen versus an epirubicin-based regimen for breast cancer: the LITE (Liposomal doxorubicin-Investigational chemotherapy-Tissue Doppler imaging Evaluation) randomized pilot study. Int J Cardiol 167(3):1055–1057

    Article  PubMed  Google Scholar 

  47. van Dalen EC, Michiels EM, Caron HN et al (2010) Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev 3:CD005006

    Google Scholar 

  48. Swain SM, Whaley FS, Gerber MC et al (1997) Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15(4):1333–1340

    Article  CAS  PubMed  Google Scholar 

  49. Zhao YY, Sawyer DR, Baliga RR et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269

    Article  CAS  PubMed  Google Scholar 

  50. Fuchs IB, Landt S, Bueler H et al (2003) Analysis of HER2 and HER4 in human myocardium to clarify the cardiotoxicity of trastuzumab (Herceptin). Breast Cancer Res Treat 82(1):23–28

    Article  CAS  PubMed  Google Scholar 

  51. Bersell K, Arab S, Haring B et al (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270

    Article  CAS  PubMed  Google Scholar 

  52. Fedele C, Riccio G, Malara AE et al (2012) Mechanisms of cardiotoxicity associated with ErbB2 inhibitors. Breast Cancer Res Treat 134(2):595–602

    Article  CAS  PubMed  Google Scholar 

  53. Sparano JA (2001) Cardiac toxicity of trastuzumab (herceptin): implications for the design of adjuvant trials. Semin Oncol 28(1 Suppl 3):20–27

    Article  CAS  PubMed  Google Scholar 

  54. Higgins AY, O’Halloran TD, Chang JD (2015) Chemotherapy-induced cardiomyopathy. Heart Fail Rev 20(6):721–730

    Article  CAS  PubMed  Google Scholar 

  55. Long HD, Lin YE, Zhang JJ et al (2016) Risk of congestive heart failure in early breast cancer patients undergoing adjuvant treatment with trastuzumab: a meta-analysis. Oncologist 21(5):547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Korte MA, de Vries EG, Lub-de Hooge MN et al (2007) 111 Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer 43(14):2046–2051

    Article  PubMed  CAS  Google Scholar 

  57. Ewer MS, Ewer SM (2010) Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 7(10):564–575

    Article  PubMed  Google Scholar 

  58. Chen T, Xu T, Li Y et al (2011) Risk of cardiac dysfunction with trastuzumab in breast cancer patients: a meta-analysis. Cancer Treat Rev 37(4):312–320

    Article  CAS  PubMed  Google Scholar 

  59. Madeddu C, Deidda M, Piras A, et al (2016) Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown) 17 Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection:e12-e18

    Google Scholar 

  60. Albini A, Pennesi G, Donatelli F et al (2010) Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 102(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Conklin DJ, Haberzettl P, Jagatheesan G et al (2015) Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice. Toxicol Appl Pharmacol 285(2):136–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeh ET, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53(24):2231–2247

    Article  CAS  PubMed  Google Scholar 

  63. Czaykowski PM, Moore MJ, Tannock IF (1998) High risk of vascular events in patients with urothelial transitional cell carcinoma treated with cisplatin based chemotherapy. J Urol 160(6 Pt 1):2021–2024

    Article  CAS  PubMed  Google Scholar 

  64. Nuver J, De Haas EC, Van Zweeden M et al (2010) Vascular damage in testicular cancer patients: a study on endothelial activation by bleomycin and cisplatin in vitro. Oncol Rep 23(1):247–253

    CAS  PubMed  Google Scholar 

  65. Ai D, Banchs J, Owusu-Agyemang P et al (2014) Chemotherapy-induced cardiovascular toxicity: beyond anthracyclines. Minerva Anestesiol 80(5):586–594

    CAS  PubMed  Google Scholar 

  66. Ezaz G, Long JB, Gross CP et al (2014) Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc 3(1):e000472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Domercant J, Polin N, Jahangir E (2016) Cardio-oncology: a focused review of anthracycline-, human epidermal growth factor receptor 2 inhibitor-, and radiation-induced cardiotoxicity and management. Ochsner J 16(3):250–256

    PubMed  PubMed Central  Google Scholar 

  68. Hong RA, Iimura T, Sumida KN et al (2010) Cardio-oncology/Onco-cardiology. Clin Cardiol 33(12):733–737

    Article  PubMed  Google Scholar 

  69. Chow EJ, Chen Y, Kremer LC et al (2015) Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol 33(5):394–402

    Article  PubMed  Google Scholar 

  70. Rahman A (2014) Prediction model for heart failure in childhood cancer survivors. Lancet Oncol 15(12):e537

    Article  PubMed  Google Scholar 

  71. Lotrionte M, Biondi-Zoccai G, Abbate A et al (2013) Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol 112(12):1980–1984

    Article  CAS  PubMed  Google Scholar 

  72. Kotwinski P, Smith G, Cooper J et al (2016) Body surface area and baseline blood pressure predict subclinical anthracycline cardiotoxicity in women treated for early breast cancer. PLoS One 11(12):e0165262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Legha SS, Benjamin RS, Mackay B et al (1982) Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 96(2):133–139

    Article  CAS  PubMed  Google Scholar 

  74. Bosch X, Rovira M, Sitges M et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 61(23):2355–2362

    Article  CAS  PubMed  Google Scholar 

  75. Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 19(36):9

    Google Scholar 

  76. Cavarretta E, Casella G, Calì B et al (2013) Cardiac remodeling in obese patients after laparoscopic sleeve gastrectomy. World J Surg 37(3):565–572

    Article  PubMed  Google Scholar 

  77. De Castro S, Salandin V, Cavarretta E et al (2006) Epicardial real-time three-dimensional echocardiography in cardiac surgery: a preliminary experience. Ann Thorac Surg 82(6):2254–2259

    Article  PubMed  Google Scholar 

  78. De Castro S, Pelliccia A, Caselli S et al (2006) Remodelling of the left ventricle in athlete’s heart: a three dimensional echocardiographic and magnetic resonance imaging study. Heart 92(7):975–976

    Article  PubMed  PubMed Central  Google Scholar 

  79. Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 15(10):1063–1093

    Article  PubMed  PubMed Central  Google Scholar 

  80. De Castro S, Cavarretta E, Milan A et al (2008) Usefulness of tricuspid annular velocity in identifying global RV dysfunction in patients with primary pulmonary hypertension: a comparison with 3D echo-derived right ventricular ejection fraction. Echocardiography 25(3):289–293

    Article  PubMed  Google Scholar 

  81. Lotrionte M, Cavarretta E, Abbate A et al (2013) Temporal changes in standard and tissue Doppler imaging echocardiographic parameters after anthracycline chemotherapy in women with breast cancer. Am J Cardiol 112(7):1005–1012

    Article  CAS  PubMed  Google Scholar 

  82. Sawaya H, Sebag IA, Plana JC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5(5):596–603

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thavendiranathan P, Wintersperger BJ, Flamm SD et al (2013) Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging 6(6):1080–1091

    Article  PubMed  Google Scholar 

  84. McMurray JJ, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004

    Article  PubMed  CAS  Google Scholar 

  85. Moss AJ, Hall WJ, Cannom DS et al (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 361(14):1329–1338

    Article  PubMed  Google Scholar 

  86. Oliveira GH, Dupont M, Naftel D et al (2014) Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 63(3):240–248

    Article  PubMed  Google Scholar 

  87. Appel JM, Sander K, Hansen PB et al (2012) Left ventricular assist device as bridge to recovery for anthracycline-induced terminal heart failure. Congest Heart Fail 18(5):291–294

    Article  CAS  PubMed  Google Scholar 

  88. Schmitz KH, Courneya KS, Matthews C et al (2010) American College of Sports Medicine. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426

    Article  PubMed  Google Scholar 

  89. Courneya KS, Friedenreich CM (2007) Physical activity and cancer control. Semin Oncol Nurs 23(4):242–252

    Article  PubMed  Google Scholar 

  90. Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C et al (2012) Physical exercise as an epigenetic modulator: eustress, the “positive stress” as an effector of gene expression. J Strength Cond Res 26(12):3469–3472

    Article  PubMed  Google Scholar 

  91. Lemanne D, Cassileth B, Gubili J (2013) The role of physical activity in cancer prevention, treatment, recovery, and survivorship. Oncology 27(6):580–585

    PubMed  Google Scholar 

  92. Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Eur Heart J 37(29):2315–2381

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lynch BM, Neilson HK, Friedenreich CM (2011) Physical activity and breast cancer prevention. Recent Results Cancer Res 186:13–42

    Article  PubMed  Google Scholar 

  94. Behrens G, Leitzmann MF (2013) The association between physical activity and renal cancer: systematic review and meta-analysis. Br J Cancer 108(4):798–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boyle T, Keegel T, Bull F et al (2012) Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst 104(20):1548–1561

    Article  PubMed  Google Scholar 

  96. Simons CC, Hughes LA, van Engeland M et al (2013) Physical activity, occupational sitting time, and colorectal cancer risk in the Netherlands cohort study. Am J Epidemiol 177(6):514–530

    Article  PubMed  Google Scholar 

  97. Stamatakis E, Chau JY, Pedisic Z et al (2013) Are sitting occupations associated with increased all-cause, cancer, and cardiovascular disease mortality risk? A pooled analysis of seven British population cohorts. PLoS One 8(9):e73753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. George ES, Rosenkranz RR, Kolt GS (2013) Chronic disease and sitting time in middle-aged Australian males: findings from the 45 and Up Study. Int J Behav Nutr Phys Act 10:20

    Article  PubMed  PubMed Central  Google Scholar 

  99. Angenete E, Angerås U, Börjesson M et al (2016) Physical activity before radical prostatectomy reduces sick leave after surgery – results from a prospective, non-randomized controlled clinical trial (LAPPRO). BMC Urol 16(1):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Winningham ML, MacVicar MG, Bondoc M et al (1989) Effect of aerobic exercise on body weight and composition in patients with breast cancer on adjuvant chemotherapy. Oncol Nurs Forum 16(5):683–689

    CAS  PubMed  Google Scholar 

  101. Repka CP, Peterson BM, Brown JM et al (2014) Cancer type does not affect exercise-mediated improvements in cardiorespiratory function and fatigue. Integr Cancer Ther 13(6):473–481

    Article  PubMed  Google Scholar 

  102. Schneider CM, Hsieh CC, Sprod LK et al (2007) Exercise training manages cardiopulmonary function and fatigue during and following cancer treatment in male cancer survivors. Integr Cancer Ther 6(3):235–241

    Article  PubMed  Google Scholar 

  103. Mishra SI, Scherer RW, Snyder C et al (2012) Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev 8:CD008465

    Google Scholar 

  104. Kampshoff CS, Chinapaw MJ, Brug J et al (2015) Randomized controlled trial of the effects of high intensity and low-to-moderate intensity exercise on physical fitness and fatigue in cancer survivors: results of the resistance and endurance exercise after chemotherapy (REACT) study. BMC Med 13:275

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bartlett JD, Close GL, MacLaren DP et al (2011) High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci 29(6):547–553

    Article  PubMed  Google Scholar 

  106. Albrecht TA, Taylor AG (2012) Physical activity in patients with advanced-stage cancer: a systematic review of the literature. Clin J Oncol Nurs 16(3):293–300

    Article  PubMed  PubMed Central  Google Scholar 

  107. Siemens W, Wehrle A, Gaertner J et al (2015) Implementing a home-based exercise program for patients with advanced, incurable diseases after discharge and their caregivers: lessons we have learned. BMC Res Notes 8(1):1–6

    Article  Google Scholar 

  108. Eyigor S, Akdeniz S (2014) Is exercise ignored in palliative cancer patients? World J Clin Oncol 5(3):554–559

    Article  PubMed  PubMed Central  Google Scholar 

  109. Horenstein MS, Vander Heide RS, L’Ecuyer TJ (2000) Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol Genet Metab 71(1–2):436–444

    Article  CAS  PubMed  Google Scholar 

  110. Simůnek T, Stérba M, Popelová O et al (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61(1):154–171

    Article  PubMed  Google Scholar 

  111. Xu MF, Tang PL, Qian ZM et al (2001) Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci 68(8):889–901

    Article  CAS  PubMed  Google Scholar 

  112. Zhu W, Zou Y, Aikawa R et al (1999) MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100(20):2100–2107

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto Y, Hoshino Y, Ito T et al (2008) Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res 79(1):89–96

    Article  CAS  PubMed  Google Scholar 

  114. Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273(1–2):25–32

    Article  CAS  PubMed  Google Scholar 

  115. Kang YJ, Zhou ZX, Wang GW et al (2000) Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem 275(18):13690–13698

    Article  CAS  PubMed  Google Scholar 

  116. Keung EC, Toll L, Ellis M et al (1991) L-type cardiac calcium channels in doxorubicin cardiomyopathy in rats morphological, biochemical, and functional correlations. J Clin Invest 87(6):2108–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saeki K, Obi I, Ogiku N et al (2002) Doxorubicin directly binds to the cardiac-type ryanodine receptor. Life Sci 70(20):2377–2389

    Article  CAS  PubMed  Google Scholar 

  118. Lewinter MM, Vanburen P (2002) Myofilament remodeling during the progression of heart failure. J Card Fail 8(6 Suppl):S271–S275

    Article  PubMed  Google Scholar 

  119. Kim Y, Ma AG, Kitta K et al (2003) Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol 63(2):368–377

    Article  CAS  PubMed  Google Scholar 

  120. Seraydarian MW, Artaza L, Goodman MF (1977) Adriamycin: effect on mammalian cardiac cells in culture I. Cell population and energy metabolism. J Mol Cell Cardiol 9(5):375–382

    Article  CAS  PubMed  Google Scholar 

  121. Combs AB, Hudman SL, Bonner HW (1979) Effect of exercise stress upon the acute toxicity of adriamycin in mice. Res Commun Chem Pathol Pharmacol 23(2):395–398

    CAS  PubMed  Google Scholar 

  122. Kanter MM, Hamlin RL, Unverferth DV et al (1985) Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol (1985) 59(4):1298–1303

    Article  CAS  Google Scholar 

  123. Ji LL, Mitchell EW (1994) Effects of Adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharmacol 47(5):877–885

    Article  CAS  PubMed  Google Scholar 

  124. Ascensão A, Magalhães J, Soares J et al (2005) Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice. Int J Cardiol 100(3):451–460

    Article  PubMed  Google Scholar 

  125. Ascensão A, Ferreira R, Magalhães J (2007) Exercise-induced cardioprotection – biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 117(1):16–30

    Article  PubMed  Google Scholar 

  126. Werner C, Hanhoun M, Widmann T et al (2008) Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 52(6):470–482

    Article  CAS  PubMed  Google Scholar 

  127. Chicco AJ, Schneider CM, Hayward R (2005) Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol 289(2):R424–R431

    Article  CAS  PubMed  Google Scholar 

  128. Chicco AJ, Schneider CM, Hayward R (2006) Exercise training attenuates acute doxorubicin-induced cardiac dysfunction. J Cardiovasc Pharmacol 47(2):182–189

    Article  CAS  PubMed  Google Scholar 

  129. Chicco AJ, Hydock DS, Schneider CM et al (2006) Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol (1985) 100(2):519–527

    Article  CAS  Google Scholar 

  130. Parry TL, Hydock DS, Jensen BT et al (2014) Endurance exercise attenuates cardiotoxicity induced by androgen deprivation and doxorubicin. Can J Physiol Pharmacol 92(5):356–362

    Article  CAS  PubMed  Google Scholar 

  131. Ashraf J, Roshan VD (2012) Is short-term exercise a therapeutic tool for improvement of cardioprotection against DOX-induced cardiotoxicity? An experimental controlled protocol in rats. Asian Pac J Cancer Prev 13(8):4025–4030

    Article  PubMed  Google Scholar 

  132. Shirinbayan V, Roshan VD (2012) Pretreatment effect of running exercise on HSP70 and DOX-induced cardiotoxicity. Asian Pac J Cancer Prev 13(11):5849–5855

    Article  PubMed  Google Scholar 

  133. Kolwicz SC, MacDonnell SM, Kendrick ZV et al (2008) Voluntary wheel running and pacing-induced dysfunction in hypertension. Clin Exp Hypertens 30(7):565–573

    Article  PubMed  Google Scholar 

  134. Boström P, Mann N, Wu J et al (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Hydock DS, Wonders KY, Schneider CM et al (2009) Voluntary wheel running in rats receiving doxorubicin: effects on running activity and cardiac myosin heavy chain. Anticancer Res 29(11):4401–4407

    CAS  PubMed  Google Scholar 

  136. Hydock DS, Lien CY, Jensen BT et al (2011) Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity. Integr Cancer Ther 10(1):47–57

    Article  PubMed  Google Scholar 

  137. Hydock DS, Lien CY, Schneider CM et al (2008) Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exerc 40(5):808–817

    Article  CAS  PubMed  Google Scholar 

  138. Hydock DS, Lien CY, Jensen BT et al (2012) Rehabilitative exercise in a rat model of doxorubicin cardiotoxicity. Exp Biol Med (Maywood) 237(12):1483–1492

    Article  CAS  Google Scholar 

  139. Coven DL, Hu X, Cong L et al (2003) Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285(3):E629–E636

    Article  CAS  PubMed  Google Scholar 

  140. Smuder AJ, Kavazis AN, Min K et al (2013) Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J Appl Physiol (1985) 115(2):176–185

    Article  CAS  Google Scholar 

  141. Nair N, Gongora E (2016) Heart failure in chemotherapy-related cardiomyopathy: can exercise make a difference? BBA Clin 6:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  142. Courneya KS, Segal RJ, Mackey JR et al (2007) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol 25(28):4396–4404

    Article  PubMed  Google Scholar 

  143. Courneya KS, McKenzie DC, Mackey JR et al (2013) Effects of exercise dose and type during breast cancer chemotherapy: multicenter randomized trial. J Natl Cancer Inst 105(23):1821–1832

    Article  PubMed  Google Scholar 

  144. Courneya KS, Segal RJ, Mackey JR et al (2014) Effects of exercise dose and type on sleep quality in breast cancer patients receiving chemotherapy: a multicenter randomized trial. Breast Cancer Res Treat 144(2):361–369

    Article  CAS  PubMed  Google Scholar 

  145. Hornsby WE, Douglas PS, West MJ et al (2014) Safety and efficacy of aerobic training in operable breast cancer patients receiving neoadjuvant chemotherapy: a phase II randomized trial. Acta Oncol 53(1):65–74

    Article  PubMed  Google Scholar 

  146. Vincent F, Labourey JL, Leobon S et al (2013) Effects of a home-based walking training program on cardiorespiratory fitness in breast cancer patients receiving adjuvant chemotherapy: a pilot study. Eur J Phys Rehabil Med 49(3):319–329

    CAS  PubMed  Google Scholar 

  147. Haykowsky MJ, Mackey JR, Thompson RB et al (2009) Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res 15(15):4963–4967

    Article  CAS  PubMed  Google Scholar 

  148. Garber CE, Blissmer B, Deschenes MR et al (2011) American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

  149. Musanti R (2012) A study of exercise modality and physical self-esteem in breast cancer survivors. Med Sci Sports Exerc 44(2):352–361

    Article  PubMed  Google Scholar 

  150. Jones LW, Haykowsky M, Peddle CJ et al (2007) Cardiovascular risk profile of patients with HER2/neu-positive breast cancer treated with anthracycline-taxane-containing adjuvant chemotherapy and/or trastuzumab. Cancer Epidemiol Biomark Prev 16(5):1026–1031

    Article  CAS  Google Scholar 

  151. Scharhag-Rosenberger F, Kuehl R, Klassen O et al (2015) Exercise training intensity prescription in breast cancer survivors: validity of current practice and specific recommendations. J Cancer Surviv 9(4):612–619

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cavarretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavarretta, E., Mastroiacovo, G., Lupieri, A., Frati, G., Peruzzi, M. (2017). The Positive Effects of Exercise in Chemotherapy-Related Cardiomyopathy. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Springer, Singapore. https://doi.org/10.1007/978-981-10-4304-8_8

Download citation

Publish with us

Policies and ethics