Skip to main content

C/EBPB-CITED4 in Exercised Heart

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1000))

Abstract

C/EBPB is a crucial transcription factor, participating in a variety of biological processes including cell proliferation, differentiation and development. In the cardiovascular system, C/EBPB-CITED4 signaling is known as a signaling pathway mediating exercise-induced cardiac growth. After its exact role in exercised heart firstly reported in 2010, more and more evidence confirmed that. MicroRNA (e.g. miR-222) and many molecules (e.g. Alpha-lipoic acid) can regulate this pathway and then involve in the cardiac protection effect induced by endurance exercise training. In addition, in cardiac growth during pregnancy, C/EBPB is also a required regulator. This chapter will give an introduction of the C/EBPB-CITED4 signaling and the regulatory network based on this signaling pathway in exercised heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ekelund LG, Haskell WL, Johnson JL et al (1988) Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The lipid research clinics mortality follow-up study. N Engl J Med 319(21):1379–1384

    Article  CAS  PubMed  Google Scholar 

  2. Kim JH, Malhotra R, Chiampas G et al (2012) Cardiac arrest during long-distance running races. N Engl J Med 366(2):130–140

    Article  CAS  PubMed  Google Scholar 

  3. McMullen JR, Shioi T, Zhang L et al (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A 100(21):12355–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perrino C, Naga Prasad SV, Mao L et al (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116(6):1547–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17(7):318–324

    Article  CAS  PubMed  Google Scholar 

  6. Akira S, Isshiki H, Sugita T et al (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9(6):1897–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Poli V, Mancini FP, Cortese R (1990) IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63(3):643–653

    Article  CAS  PubMed  Google Scholar 

  8. Descombes P, Chojkier M, Lichtsteiner S et al (1990) LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev 4(9):1541–1551

    Article  CAS  PubMed  Google Scholar 

  9. Katz S, Kowenz-Leutz E, Muller C et al (1993) The NF-M transcription factor is related to C/EBP beta and plays a role in signal transduction, differentiation and leukemogenesis of avian myelomonocytic cells. EMBO J 12(4):1321–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kousteni S, Kockar FT, Sweeney GE et al (1998) Characterisation and developmental regulation of the Xenopus laevis CCAAT-enhancer binding protein beta gene. Mech Dev 77(2):143–148

    Article  CAS  PubMed  Google Scholar 

  11. Alberini CM, Ghirardi M, Metz R et al (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76(6):1099–1114

    Article  CAS  PubMed  Google Scholar 

  12. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365(3):561–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6(3):439–453

    Article  CAS  PubMed  Google Scholar 

  14. Johnson PF, Landschulz WH, Graves BJ et al (1987) Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses. Genes Dev 1(2):133–146

    Article  CAS  PubMed  Google Scholar 

  15. Chang CJ, Chen TT, Lei HY et al (1990) Molecular cloning of a transcription factor, AGP/EBP, that belongs to members of the C/EBP family. Mol Cell Biol 10(12):6642–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5(9):1538–1552

    Article  CAS  PubMed  Google Scholar 

  17. Williams SC, Cantwell CA, Johnson PF (1991) A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev 5(9):1553–1567

    Article  CAS  PubMed  Google Scholar 

  18. Landschulz WH, Johnson PF, Adashi EY et al (1988) Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 2(7):786–800

    Article  CAS  PubMed  Google Scholar 

  19. Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246(4932):911–916

    Article  CAS  PubMed  Google Scholar 

  20. Agre P, Johnson PF, McKnight SL (1989) Cognate DNA binding specificity retained after leucine zipper exchange between GCN4 and C/EBP. Science 246(4932):922–926

    Article  CAS  PubMed  Google Scholar 

  21. LeClair KP, Blanar MA, Sharp PA (1992) The p50 subunit of NF-kappa B associates with the NF-IL6 transcription factor. Proc Natl Acad Sci U S A 89(17):8145–8149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vallejo M, Ron D, Miller CP et al (1993) C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci U S A 90(10):4679–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsu W, Kerppola TK, Chen PL et al (1994) Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. Mol Cell Biol 14(1):268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tahirov TH, Inoue-Bungo T, Morii H et al (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104(5):755–767

    Article  CAS  PubMed  Google Scholar 

  25. Tahirov TH, Sato K, Ichikawa-Iwata E et al (2002) Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Cell 108(1):57–70

    Article  CAS  PubMed  Google Scholar 

  26. Hurst HC (1995) Transcription factors 1: bZIP proteins. Protein Profile 2(2):101–168

    CAS  PubMed  Google Scholar 

  27. Descombes P, Schibler U (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67(3):569–579

    Article  CAS  PubMed  Google Scholar 

  28. Nakajima T, Kinoshita S, Sasagawa T et al (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci U S A 90(6):2207–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cardinaux JR, Allaman I, Magistretti PJ (2000) Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia 29(1):91–97

    Article  CAS  PubMed  Google Scholar 

  30. Tengku-Muhammad TS, Hughes TR, Ranki H et al (2000) Differential regulation of macrophage CCAAT-enhancer binding protein isoforms by lipopolysaccharide and cytokines. Cytokine 12(9):1430–1436

    Article  CAS  PubMed  Google Scholar 

  31. Yin M, Yang SQ, Lin HZ et al (1996) Tumor necrosis factor alpha promotes nuclear localization of cytokine-inducible CCAAT/enhancer binding protein isoforms in hepatocytes. J Biol Chem 271(30):17974–17978

    Article  CAS  PubMed  Google Scholar 

  32. Matsui H, Ihara Y, Fujio Y et al (1999) Induction of interleukin (IL)-6 by hypoxia is mediated by nuclear factor (NF)-kappa B and NF-IL6 in cardiac myocytes. Cardiovasc Res 42(1):104–112

    Article  CAS  PubMed  Google Scholar 

  33. Ambrosino C, Iwata T, Scafoglio C et al (2006) TEF-1 and C/EBPbeta are major p38alpha MAPK-regulated transcription factors in proliferating cardiomyocytes. Biochem J 396(1):163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimizu S, Hosooka T, Matsuda T et al (2012) DPP4 inhibitor vildagliptin preserves beta-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 49(2):125–135

    Article  CAS  PubMed  Google Scholar 

  35. Yahata T, Takedatsu H, Dunwoodie SL et al (2002) Cloning of mouse Cited4, a member of the CITED family p300/CBP-binding transcriptional coactivators: induced expression in mammary epithelial cells. Genomics 80(6):601–613

    Article  CAS  PubMed  Google Scholar 

  36. Braganca J, Swingler T, Marques FI et al (2002) Human CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J Biol Chem 277(10):8559–8565

    Article  CAS  PubMed  Google Scholar 

  37. Huang KT, Takano EA, Mikeska T et al (2011) Aberrant DNA methylation but not mutation of CITED4 is associated with alteration of HIF-regulated genes in breast cancer. Breast Cancer Res Treat 130(1):319–329

    Article  CAS  PubMed  Google Scholar 

  38. Davidson B, Stavnes HT, Risberg B et al (2012) Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol 43(5):684–694

    Article  CAS  PubMed  Google Scholar 

  39. Rogers MA, Kalter V, Marcias G et al (2016) CITED4 gene silencing in colorectal cancer cells modulates adherens/tight junction gene expression and reduces cell proliferation. J Cancer Res Clin Oncol 142(1):225–237

    Article  CAS  PubMed  Google Scholar 

  40. Campa VM, Gutierrez-Lanza R, Cerignoli F et al (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bostrom P, Mann N, Wu J et al (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Friedman JE (1994) Role of glucocorticoids in activation of hepatic PEPCK gene transcription during exercise. Am J Phys 266(4 Pt 1):E560–E566

    CAS  Google Scholar 

  43. Park EA, Gurney AL, Nizielski SE et al (1993) Relative roles of CCAAT/enhancer-binding protein beta and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP). J Biol Chem 268(1):613–619

    CAS  PubMed  Google Scholar 

  44. Bozi LH, Jannig PR, Rolim N et al (2016) Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J Cell Mol Med 20(11):2208–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bourdier G, Flore P, Sanchez H et al (2016) High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size. Am J Physiol Heart Circ Physiol 310(2):H279–H289

    Article  PubMed  Google Scholar 

  46. Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. J Mol Cell Cardiol 48(6):1105–1110

    Article  CAS  PubMed  Google Scholar 

  47. Pierre N, Barbe C, Gilson H et al (2014) Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun 450(1):459–463

    Article  CAS  PubMed  Google Scholar 

  48. Styner M, Meyer MB, Galior K et al (2012) Mechanical strain downregulates C/EBPbeta in MSC and decreases endoplasmic reticulum stress. PLoS One 7(12):e51613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding Y, Chang C, Xie L et al (2014) Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca(2)(+) overload and endoplasmic reticulum stress-induced apoptosis pathway. Chin Med J 127(18):3265–3271

    PubMed  Google Scholar 

  50. Metz R, Ziff E (1991) cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription. Genes Dev 5(10):1754–1766

    Article  CAS  PubMed  Google Scholar 

  51. Chinery R, Brockman JA, Dransfield DT et al (1997) Antioxidant-induced nuclear translocation of CCAAT/enhancer-binding protein beta. A critical role for protein kinase A-mediated phosphorylation of Ser299. J Biol Chem 272(48):30356–30361

    Article  CAS  PubMed  Google Scholar 

  52. Nizielski SE, Arizmendi C, Shteyngarts AR et al (1996) Involvement of transcription factor C/EBP-beta in stimulation of PEPCK gene expression during exercise. Am J Phys 270(5 Pt 2):R1005–R1012

    CAS  Google Scholar 

  53. Abergel E, Chatellier G, Hagege AA et al (2004) Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up. J Am Coll Cardiol 44(1):144–149

    Article  PubMed  Google Scholar 

  54. Felix AC, Dutra SG, Tezini GC et al (2015) Aerobic physical training increases contractile response and reduces cardiac fibrosis in rats subjected to early ovarian hormone deprivation. J Appl Physiol (1985) 118(10):1276–1285

    Article  CAS  Google Scholar 

  55. de Melo BL, Vieira SS, Antonio EL et al (2016) Exercise training attenuates right ventricular remodeling in rats with pulmonary arterial stenosis. Front Physiol 7:541

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chrysohoou C, Angelis A, Tsitsinakis G et al (2015) Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure. A randomized phase III clinical trial. Int J Cardiol 179:269–274

    Article  PubMed  Google Scholar 

  57. Ostman C, Jewiss D, Smart NA (2016) The effect of exercise training intensity on quality of life in heart failure patients: a systematic review and meta-analysis. Cardiology 136(2):79–89

    Article  PubMed  Google Scholar 

  58. Bezzerides VJ, Platt C, Lerchenmuller C et al (2016) CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight 1(9):e85904

    Google Scholar 

  59. Eghbali M, Deva R, Alioua A et al (2005) Molecular and functional signature of heart hypertrophy during pregnancy. Circ Res 96(11):1208–1216

    Article  CAS  PubMed  Google Scholar 

  60. Schannwell CM, Zimmermann T, Schneppenheim M et al (2002) Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology 97(2):73–78

    Article  PubMed  Google Scholar 

  61. Redondo-Angulo I, Mas-Stachurska A, Sitges M et al (2016) C/EBPbeta is required in pregnancy-induced cardiac hypertrophy. Int J Cardiol 202:819–828

    Article  CAS  PubMed  Google Scholar 

  62. Genead R, Fischer H, Hussain A et al (2012) Ischemia-reperfusion injury and pregnancy initiate time-dependent and robust signs of up-regulation of cardiac progenitor cells. PLoS One 7(5):e36804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiao J, Li J, Xu T et al (2014) Pregnancy-induced physiological hypertrophy protects against cardiac ischemia-reperfusion injury. Int J Clin Exp Pathol 7(1):229–235

    PubMed  Google Scholar 

  64. Liu X, Xiao J, Zhu H et al (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21(4):584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zou J, Li H, Chen X et al (2014) C/EBPbeta knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFkappaB. Mol Cell Endocrinol 390(1-2):18–25

    Article  CAS  PubMed  Google Scholar 

  66. Lew JK, Pearson JT, Schwenke DO et al (2017) Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 16(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  67. WW D, Li X, Li T et al (2015) The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. J Cell Sci 128(2):293–304

    Article  CAS  Google Scholar 

  68. Shi J, Bei Y, Kong X et al (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7(3):664–676

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ulven SM, Foss SS, Skjolsvik AM et al (2015) An acute bout of exercise modulate the inflammatory response in peripheral blood mononuclear cells in healthy young men. Arch Physiol Biochem 121(2):41–49

    Article  CAS  PubMed  Google Scholar 

  70. Sorriento D, Santulli G, Franco A et al (2015) Integrating GRK2 and NFkappaB in the pathophysiology of cardiac hypertrophy. J Cardiovasc Transl Res 8(8):493–502

    Article  PubMed  Google Scholar 

  71. Cao W, Chen J, Chen Y et al (2015) Advanced glycation end products induced immune maturation of dendritic cells controls heart failure through NF-kappaB signaling pathway. Arch Biochem Biophys 580:112–120

    Article  CAS  PubMed  Google Scholar 

  72. Li CJ, Lv L, Li H et al (2012) Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 11:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zou J, Gan X, Zhou H et al (2015) Alpha-lipoic acid attenuates cardiac hypertrophy via inhibition of C/EBPbeta activation. Mol Cell Endocrinol 399:321–329

    Article  CAS  PubMed  Google Scholar 

  74. Weiner RB, Baggish AL (2015) Cardiovascular adaptation and remodeling to rigorous athletic training. Clin Sports Med 34(3):405–418

    Article  PubMed  Google Scholar 

  75. Wilson MG, Ellison GM, Cable NT (2016) Basic science behind the cardiovascular benefits of exercise. Br J Sports Med 50(2):93–99

    Article  PubMed  Google Scholar 

  76. Mihl C, Dassen WR, Kuipers H (2008) Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J 16(4):129–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oka T, Maillet M, Watt AJ et al (2006) Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 98(6):837–845

    Article  CAS  PubMed  Google Scholar 

  78. McGee SL, Hargreaves M (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53(5):1208–1214

    Article  CAS  PubMed  Google Scholar 

  79. Hitz MP, Andelfinger G (2015) Cardiology: race for healthy hearts. Nature 520(7546):160–161

    Article  CAS  PubMed  Google Scholar 

  80. Buck M, Poli V, van der Geer P et al (1999) Phosphorylation of rat serine 105 or mouse threonine 217 in C/EBP beta is required for hepatocyte proliferation induced by TGF alpha. Mol Cell 4(6):1087–1092

    Article  CAS  PubMed  Google Scholar 

  81. Choudhury M, Qadri I, Rahman SM et al (2011) C/EBPbeta is AMP kinase sensitive and up-regulates PEPCK in response to ER stress in hepatoma cells. Mol Cell Endocrinol 331(1):102–108

    Article  CAS  PubMed  Google Scholar 

  82. Greenbaum LE, Li W, Cressman DE et al (1998) CCAAT enhancer- binding protein beta is required for normal hepatocyte proliferation in mice after partial hepatectomy. J Clin Invest 102(5):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Berberich-Siebelt F, Berberich I, Andrulis M et al (2006) SUMOylation interferes with CCAAT/enhancer-binding protein beta-mediated c-myc repression, but not IL-4 activation in T cells. J Immunol 176(8):4843–4851

    Article  CAS  PubMed  Google Scholar 

  84. Zhu S, Yoon K, Sterneck E et al (2002) CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A 99(1):207–212

    Article  CAS  PubMed  Google Scholar 

  85. Kajimura S, Seale P, Kubota K et al (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460(7259):1154–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee KW, Kwak SH, Ahn BY et al (2013) F-box only protein 9 is required for adipocyte differentiation. Biochem Biophys Res Commun 435(2):239–243

    Article  CAS  PubMed  Google Scholar 

  87. Rochford JJ, Semple RK, Laudes M et al (2004) ETO/MTG8 is an inhibitor of C/EBPbeta activity and a regulator of early adipogenesis. Mol Cell Biol 24(22):9863–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cortes-Canteli M, Pignatelli M, Santos A et al (2002) CCAAT/enhancer-binding protein beta plays a regulatory role in differentiation and apoptosis of neuroblastoma cells. J Biol Chem 277(7):5460–5467

    Article  CAS  PubMed  Google Scholar 

  89. Seagroves TN, Krnacik S, Raught B et al (1998) C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 12(12):1917–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson GW, Johnson PF, Hennighausen L et al (1998) The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev 12(12):1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu S, HS O, Shim M et al (1999) C/EBPbeta modulates the early events of keratinocyte differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol Cell Biol 19(10):7181–7190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smink JJ, Begay V, Schoenmaker T et al (2009) Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis through MafB. EMBO J 28(12):1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ohoka N, Kato S, Takahashi Y et al (2009) The orphan nuclear receptor RORalpha restrains adipocyte differentiation through a reduction of C/EBPbeta activity and perilipin gene expression. Mol Endocrinol 23(6):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ichida F, Nishimura R, Hata K et al (2004) Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem 279(32):34015–34022

    Article  CAS  PubMed  Google Scholar 

  95. Hirata M, Kugimiya F, Fukai A et al (2012) C/EBPbeta and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2alpha as the inducer in chondrocytes. Hum Mol Genet 21(5):1111–1123

    Article  CAS  PubMed  Google Scholar 

  96. Antes TJ, Goodart SA, Huynh C et al (2000) Identification and characterization of a 315-base pair enhancer, located more than 55 kilobases 5′ of the apolipoprotein B gene, that confers expression in the intestine. J Biol Chem 275(34):26637–26648

    Article  CAS  PubMed  Google Scholar 

  97. Buck M, Poli V, Hunter T et al (2001) C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 8(4):807–816

    Article  CAS  PubMed  Google Scholar 

  98. Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12(7):982–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pogribny IP, Starlard-Davenport A, Tryndyak VP et al (2010) Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Investig 90(10):1437–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Uematsu S, Kaisho T, Tanaka T et al (2007) The C/EBP beta isoform 34-kDa LAP is responsible for NF-IL-6-mediated gene induction in activated macrophages, but is not essential for intracellular bacteria killing. J Immunol 179(8):5378–5386

    Article  CAS  PubMed  Google Scholar 

  101. Yamamoto M, Uematsu S, Okamoto T et al (2007) Enhanced TLR-mediated NF-IL6 dependent gene expression by Trib1 deficiency. J Exp Med 204(9):2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsuda T, Kido Y, Asahara S et al (2010) Ablation of C/EBPbeta alleviates ER stress and pancreatic beta cell failure through the GRP78 chaperone in mice. J Clin Invest 120(1):115–126

    Article  CAS  PubMed  Google Scholar 

  103. Kinoshita SM, Taguchi S (2008) NF-IL6 (C/EBPbeta) induces HIV-1 replication by inhibiting cytidine deaminase APOBEC3G. Proc Natl Acad Sci U S A 105(39):15022–15027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongjun Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, S. et al. (2017). C/EBPB-CITED4 in Exercised Heart. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Springer, Singapore. https://doi.org/10.1007/978-981-10-4304-8_14

Download citation

Publish with us

Policies and ethics