Skip to main content

Human Microbiome: Implications on Health and Disease

  • Chapter
  • First Online:
Genome Analysis and Human Health

Abstract

Human body is a chimera of 40 trillion native cells and 60 trillion foreign cells in the form of microbes colonizing its various organ systems. The sum-total of microorganisms that colonize the human body- collectively referred to as ‘human microbiome or human microbiota’ house majority of the well over 2 million genes present in the human body that has only about 22000 genes of its own, suggesting that the human microbiome might be playing a critical role in its physiology, health and behaviour. It is now clear that the microbiota is acquired within the first 48 hours of birth and the diversity of microbiota is greatly influenced by the mode of birth, genetics, age, sex, stress, nutrition and dietary habit of the individuals. Micro-organisms are known to dwell in almost every part of human body, of which most widely studied micro-habitats include skin, mouth, digestive tract and gut. With the completion of Human Microbiome Project and ongoing research, it has been reported that the changes in human microbiome is associated with obesity, cancer, mental health disorders, asthma and autism. However, many questions are yet to be answered as to whether changes in the composition of microbiota forms the aetiology or is a direct result of a disease. The advancements in research methodologies and emerging field of culture-independent metagenomics approaches are not only likely to enhance our comprehensive understanding on the role of human microbiome on our health but also pave way to treatment of life threatening life-style diseases as well as non-genetic behavioural disorders.

Princy Hira and Utkarsh Sood contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JB, Romdalvik J, Levine KE, Hu LW. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicol Environ Chem. 2008;90:739–53.

    Article  CAS  Google Scholar 

  • Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanism underlying the resistance to diet-induced obesity in germ free mice. Proc Natl Acad Sci USA. 2007;104:979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäckhed F, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartlett JG. Antibiotic-associated diarrhea. N Engl J Med. 2002;346:334–9.

    Article  PubMed  Google Scholar 

  • Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4:430–5.

    Article  CAS  PubMed  Google Scholar 

  • Bianconi E, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40:463–71.

    Article  PubMed  Google Scholar 

  • Britton RA, Young VB. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012;20:313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buss SN, et al. Gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol. 2015;53:915–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007a;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007b;50:2374–83.

    Article  CAS  PubMed  Google Scholar 

  • Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012;9:504–18.

    Article  CAS  PubMed  Google Scholar 

  • Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis. 2008;197:435–8.

    Article  PubMed  Google Scholar 

  • Chassaing B, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519:92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136:2003–14.

    Article  PubMed  Google Scholar 

  • Danese S, Malesci A, Vetrano S. Colitis-associated cancer: the dark side of inflammatory bowel disease. Gut. 2011;60:1609–10.

    Article  CAS  PubMed  Google Scholar 

  • Di Martino ML, et al. Polyamines: emerging players in bacteria–host interactions. Int J Med Microbiol. 2013;303:484–91.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Bello MG, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drudy D, Kyne L, O’Mahony R, Fanning S. gyrA mutations in fluoroquinolone-resistant Clostridium difficile PCR-027. Emerg Infect Dis. 2007;13:504–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol. 2002;52:1615–20.

    CAS  PubMed  Google Scholar 

  • Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27:73–83.

    Article  CAS  PubMed  Google Scholar 

  • Field D, Garland M, Williams K. Correlates of specific childhood feeding problems. J Paediatr Child Health. 2003;39:299–304.

    Article  CAS  PubMed  Google Scholar 

  • Finegold SM, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–53.

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Duncan SH, Louis P. Gut microbiome and obesity in treatment of the obese patient. 2014:73–82.

    Google Scholar 

  • Freter R. The fatal enteric cholera infection in the guinea pig achieved by inhibition of normal enteric flora. J Infect Dis. 1955;97:57–65.

    Article  CAS  PubMed  Google Scholar 

  • Fukiya S, et al. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces. FEMS Microbiol Lett. 2009;293:263–70.

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011;6:209–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill CIR, Rowland IR. Diet and cancer: assessing the risk. Br J Nutr. 2002;88:s73–87.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann C, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8:e66019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106:563–73.

    Article  CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.

    Article  CAS  Google Scholar 

  • Ibrahim SH, Voigt RG, Katusic SK, Weaver AL, Barbaresi WJ. Incidence of gastrointestinal symptoms in children with autism: a population-based study. PLoS One. 2009;124:680–6.

    Google Scholar 

  • Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309–20.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson HE, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5:e9836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  • Jess T, Gamborg M, Matzen P, Munkholm P, Sørensen TI. Increased risk of intestinal cancer in Crohn’s disease: a meta-analysis of population-based cohort studies. Am J Gastroenterol. 2005;100:2724–9.

    Article  PubMed  Google Scholar 

  • Johnson CP, Myers SM. Identification and evaluation of children with autism spectrum disorders. Pediatrics. 2007;120:1183–215.

    Article  PubMed  Google Scholar 

  • Kamada N, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336:1325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis. 2010;16:2034–42.

    Article  PubMed  Google Scholar 

  • Kang DW, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8:e68322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas JA, Enoch DA, Aliyu SH. A review of mortality due to Clostridium difficile infection. J Infect. 2010;61:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome, and immune system: envisioning the future. Nature. 2011;474:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keitel V, Kubitz R, Häussinger D. Endocrine and paracrine role of bile acids. World J Gastroenterol. 2008;14:5620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89:107–14.

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012;107:89–95.

    Article  PubMed  Google Scholar 

  • Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol. 2010;44:354–60.

    PubMed  Google Scholar 

  • Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62:1505–10.

    Article  CAS  PubMed  Google Scholar 

  • Kostic AD, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanis JM, Barua S, Ballard JD. Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile. PLoS Pathog. 2010;6:e1001061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanis JM, Heinlen LD, James JA, Ballard JD. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB. PLoS Pathog. 2013;9:e1003523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanis JM, Hightower LD, Shen A, Ballard JD. TcdB from hypervirulent Clostridium difficile exhibits increased efficiency of autoprocessing. Mol Microbiol. 2012;84:66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Backed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Bihan M, Yooseph S, Methé BA. Analyses of the microbial diversity across the human microbiome. PLoS One. 2012;7:e32118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby JM, Jortner BS, Wilkins TD. Effects of the two toxins of Clostridium difficile in antibiotic-associated cecitis in hamsters. Infect Immun. 1982;36:822–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loh YH, Jakszyn P, Luben RN, Mulligan AA, Mitrou PN, Khaw KT. N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)—Norfolk Study. Am J Clin Nutr. 2011;93:1053–61.

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.

    Article  CAS  PubMed  Google Scholar 

  • Lyerly DM, Phelps CJ, Toth J, Wilkins TD. Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect Immun. 1986;54:70–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyras D, et al. Toxin B is essential for virulence of Clostridium difficile. Nature. 2009;458:1176–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69:1035s–45s.

    CAS  PubMed  Google Scholar 

  • Marsh JW, Shutt KA, Brooks MM, Pasculle AW, Muto CA, Harrison LH. Perirectal swab surveillance for Clostridium difficile by use of selective broth preamplification and real-time PCR detection of tcdB. J Clin Microbiol. 2012;50:4078–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.

    Article  CAS  PubMed  Google Scholar 

  • Merrigan M, et al. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol. 2010;192:4904–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikelsaar M, Zilmer M. Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis. 2009;21:1–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minami T, Oda K, Gima N, Yamazaki H. Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice. Environ Toxicol Pharmacol. 2007;24:316–20.

    Article  CAS  PubMed  Google Scholar 

  • Morgan XC, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulle JG, Sharp WG, Cubells JF. The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep. 2013;15:337–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.

    Article  CAS  PubMed  Google Scholar 

  • Ou J, DeLany JP, Zhang M, Sharma S, O’Keefe SJ. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr Cancer. 2012;64:34–40.

    Article  CAS  PubMed  Google Scholar 

  • Ou J, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegg AE. Toxicity of polyamines and their metabolic products. Chem Res Toxicol. 2013;26:1782–800.

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Salzberg SL. Between a chicken and a grape: estimating the number of human genes. Genome Biol. 2010;11:206–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterson J, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravel J, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7.

    Article  CAS  PubMed  Google Scholar 

  • Ray K. IBD: gut microbiota in IBD goes viral. Nat Rev Gastroenterol Hepatol. 2015;12(3):122.

    Article  PubMed  Google Scholar 

  • Rea MC, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci USA. 2010;107:9352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.

    Article  CAS  PubMed  Google Scholar 

  • Rowland RHIR. Metabolic activities of the gut microflora in relation to cancer. Microb Ecol Health Dis. 2000;12:179–85.

    Article  Google Scholar 

  • Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.

    Article  CAS  PubMed  Google Scholar 

  • Sambol SP, Merrigan MM, Tang JK, Johnson S, Gerding DN. Colonization for the prevention of Clostridium difficile disease in hamsters. J Infect Dis. 2002;186:1781–9.

    Article  PubMed  Google Scholar 

  • Schmidt C. Mental health: thinking from the gut. Nature. 2015;518:S12–5.

    Article  CAS  PubMed  Google Scholar 

  • Schnorr SL. The diverse microbiome of the hunter-gatherer. Nature. 2015;518:S14–5.

    Article  CAS  PubMed  Google Scholar 

  • Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears CL. A dynamic partnership: celebrating our gut flora. Anaerobe. 2005;11:247–51.

    Article  PubMed  Google Scholar 

  • Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22:349–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem. 2001;268:1363–72.

    Article  CAS  PubMed  Google Scholar 

  • Sharp WG, Berry RC, McCracken C, Nuhu NN, Marvel E, Saulnier CA, Klin A, Jones W, Jaquess DL. Feeding problems and nutrient intake in children with autism spectrum disorders: a meta-analysis and comprehensive review of the literature. J Autism Dev Disord. 2013;43:2159–73.

    Google Scholar 

  • Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Asp Med. 2013;34:39–58.

    Article  CAS  Google Scholar 

  • Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol. 2010;26:327–31.

    Article  PubMed  Google Scholar 

  • Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190:2505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol. 2010;192:4983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spehlmann ME, et al. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis. 2008;14:968–76.

    Article  PubMed  Google Scholar 

  • Taylor NS, Thorne GM, Bartlett JG. Comparison of two toxins produced by Clostridium difficile. Infect Immun. 1981;34:1036–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Todar K. The normal bacterial flora of humans. Todar’s Online textbook of Bacteriology, 2012. http://www.textbookofbacteriology.net/normalflora_3.html

  • Tu S, et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14:408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  • Warny M, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366:1079–84.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol. 2012;78:511–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson AJ, Collins PD. Colon cancer: a civilization disorder. Dig Dis. 2010;29:222–8.

    Article  Google Scholar 

  • Wen L, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56:184–96.

    Article  CAS  PubMed  Google Scholar 

  • World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC: AICR, 2007.

    Google Scholar 

  • Yoshimoto S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.

    Article  CAS  PubMed  Google Scholar 

  • Zackular J. Characterizing the role of the gut microbiome in colorectal cancer. Doctoral dissertation, University of Michigan; 2014.

    Google Scholar 

  • Zackular JP, Rogers MA, Ruffin MT, Schloss PD. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res. 2014;7:1112–21.

    Article  CAS  Google Scholar 

  • Zar JH. Measures of variability and dispersion, in Biostatistical analysis 5th Ed. (Editor: Lynch D) Pearson Publishing Company, USA 2010, 33–46.

    Google Scholar 

  • Zhu Y, Carvey PM, Ling Z. Altered glutathione homeostasis in animals prenatally exposed to lipopolysaccharide. Neurochem Int. 2007;50:671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipris D. Innate immunity and its role in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2008;15:326–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.H., U.S., V.G., N.N. and N.K.M. gratefully acknowledge Council of Scientific and Industrial Research (CSIR) and University Grant Commission (UGC) for providing research scholarships. We also gratefully acknowledge Department of Biotechnology (DBT), Government of India (under project BT/PR3301/BCE/08/875/2011) for providing infrastructural support.

Competing Interests

No competing interests to be disclosed.

Dr. Rup Lal

Dr. Rup Lal is an eminent professor of the University of Delhi, Delhi. His primary research interests include microbial diversity at pesticide-polluted sites, genetic and biochemistry of hexachlorocyclohexane (HCH) degradation, and development of HCH bioremediation technology. Prof. Rup Lal is also interested in the evolution of lin genes and genetic manipulation of rifamycin producer Amycolatopsis mediterranei. His group has already sequenced genomes of Amycolatopsis mediterranei S699, Thermus sp. RL, Acinetobacter sp. HA, and Sphingobium indicum B90A.

Dr. Mallikarjun Shakarad

Dr. Mallikarjun Shakarad is a professor at the Department of Zoology, University of Delhi. His area of expertise is in the evolution of life histories in insect systems and the influence of microbiota in altering the health span and life histories in higher animal systems.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rup Lal or Mallikarjun Shakarad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hira, P. et al. (2017). Human Microbiome: Implications on Health and Disease. In: Rawal, L., Ali, S. (eds) Genome Analysis and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4298-0_8

Download citation

Publish with us

Policies and ethics