Skip to main content

Genomics of the Human Y Chromosome: Applications and Implications

  • Chapter
  • First Online:
  • 825 Accesses

Abstract

Mammalian sex chromosomes are often uniquely different from each other in terms of their structural organization and genes related to sex determination and differentiation. For instance, ~78 genes identified on the male-specific region of human Y chromosome (MSY) express mostly in testis and code for ~27 distinct proteins. According to a largely believed hypothesis, human Y chromosome lost most of the genes during its evolution except the ones essential for male sex determination. This evolutionary degeneration of the Y chromosome is commonly linked to its inability to undergo homologous recombination with the X chromosome or any of the autosomes. Due to its “gene-poor” landscape and continuously decreasing size, Y chromosome was hypothesized to disappear in ~10 million years. However, abundant literature from modern day research provides evidence on its continual sustenance. First is the MSY which is a large portion of the Y chromosome, and owing to which Y does not participate in X-Y recombination. Any further reduction in its size would be a serious threat to human existence. Secondly, MSY is a result of segmental duplications (Hurles and Jobling 2003). These duplications lead to gene conversions and thus protect the human Y chromosome. Also, the Y chromosome is dominant as is witnessed by a male phenotype in patients with multiple X but only a single Y chromosome. Moreover, the highly palindromic and repetitive landscape of the Y chromosome leads to enhanced mutation rate which fuels higher levels of polymorphisms (Jobling et al. 2007). The MSY was described in detail by Jobling and Smith in 2003 (Fig. 7.1). Surprisingly, several Y chromosome haplotypes maintain fertility even without essential Y-linked genes. This highlights two facts: repetitive landscape of the Y acts as a buffer for loss of its genes and that Y chromosome to autosomal interactions might be essential for sustenance of male fertility. This chapter describes organizational complexities of the Y chromosome under various normal and disease phenotypes and effect of exogenous/environmental factors in augmenting these complexities. Due to its unique structural organization and nonhomologous nature, the Y chromosome is a unique tool for DNA-based diagnosis under normal and abnormal conditions related to male fertility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bailey JA. Recent segmental duplications in the human genome. Science. 2002;297(5583):1003–7.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein R, Wadee A, Rosendorff J, Wessels A, Jenkins T. Inverted Y chromosome polymorphism in the Gujarati Muslim Indian population of South Africa. Hum Genet. 1986;74(3):223–9.

    Article  CAS  PubMed  Google Scholar 

  • Bosch E. Duplications of the AZFa region of the human Y chromosome are mediated by homologous recombination between HERVs and are compatible with male fertility. Hum Mol Genet. 2003;12(3):341–7.

    Article  CAS  PubMed  Google Scholar 

  • Brooks R. Negative genetic correlation between male sexual attractiveness and survival. Nature. 2000;406(6791):67–70.

    Article  CAS  PubMed  Google Scholar 

  • Brown GM, et al. Characterisation of the coding sequence and fine mapping of the human DFFRY gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene. Hum Mol Genet. 1998;7(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D. The degeneration of Y chromosomes. Philos Trans R Soc Lond Ser B Biol Sci. 2000;355(1403):1563–72.

    Article  CAS  Google Scholar 

  • Charlesworth B, Coyne JA, Barton NH. The relative rates of evolution of sex chromosomes and autosomes. Am Nat. 1987;130(1):113–46.

    Article  Google Scholar 

  • Charlesworth B, Hartl DL. Population dynamics of the segregation distorter polymorphism of Drosophila melanogaster. Genetics. 1978;89(1):171–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  • Delbridge ML, Lingenfelter PA, Disteche CM, Graves JAM. Nat Genet. 1999;22(3):223–4.

    Article  CAS  PubMed  Google Scholar 

  • Delbridge ML, et al. A human candidate spermatogenesis gene, RBM1, is conserved and amplified on the marsupial Y chromosome. Nat Genet. 1997;15(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  • Dorus S. The CDY-related gene family: coordinated evolution in copy number, expression profile and protein sequence. Hum Mol Genet. 2003;12(14):1643–50.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A. Human male infertility and Y chromosome deletions: role of the AZF-candidate genes DAZ, RBM and DFFRY. Hum Reprod. 1999;14(7):1710–6.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A. The human Y chromosome’s azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men. J Med Genet. 2003;40(1):18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes S, et al. A large AZFc deletion removes DAZ3/DAZ4 and nearby genes from men in Y haplogroup N. Am J Hum Genet. 2004;74(1):180–7.

    Article  CAS  PubMed  Google Scholar 

  • Foresta C, Ferlin A, Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet. 2000;9(8):1161–9.

    Article  CAS  PubMed  Google Scholar 

  • Gavrilets S, Arnqvist G, Friberg U. The evolution of female mate choice by sexual conflict. Proc Biol Sci. 2001;268(1466):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glas R. Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X. Mamm Genome. 1999;10(11):1115–6.

    Article  CAS  PubMed  Google Scholar 

  • Graves JAM. The rise and fall of SRY. Trends Genet. 2002;18(5):259–64.

    Article  Google Scholar 

  • Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (Sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) Box 9]. Endocr Rev. 2003;24(4):466–87.

    Article  CAS  PubMed  Google Scholar 

  • Harley V, et al. DNA binding activity of recombinant SRY from normal males and XY females. Science. 1992;255(5043):453–6.

    Article  CAS  PubMed  Google Scholar 

  • Hughes JF, et al. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature. 2005;437(7055):100–3.

    Article  PubMed  Google Scholar 

  • Hurles ME, Jobling MA. A singular chromosome. Nat Genet. 2003;34(3):246–7.

    Article  CAS  PubMed  Google Scholar 

  • Hurst LD, Randerson JP. An eXceptional chromosome. Trends Genet. 1999;15(10):383–5.

    Article  CAS  PubMed  Google Scholar 

  • Jehan Z, et al. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res. 2007;17(4):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobling MA, Tyler-Smith C. The human Y chromosome: an evolutionary marker comes of age. Nat Rev Genet. 2003;4(8):598–612.

    Article  CAS  PubMed  Google Scholar 

  • Jobling MA, et al. Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y. Hum Mol Genet. 2006;16(3):307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jobling MA, et al. Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y. Hum Mol Genet. 2007;16(3):307–16.

    Article  CAS  PubMed  Google Scholar 

  • Kent-First M, et al. Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection. Mol Reprod Dev. 1999;53(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, et al. CORRIGENDUM. Hum Mol Genet. 1995;4(5):974.

    CAS  PubMed  Google Scholar 

  • Koopman P, Gubbay J, Collignon J, Lovell-Badge R. Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature. 1989;342(6252):940–2.

    Article  CAS  PubMed  Google Scholar 

  • Krausz C. Y chromosome and male infertility. Front Biosci. 1999;4(1–3):e1.

    Article  CAS  PubMed  Google Scholar 

  • Kuroda-Kawaguchi T, et al. The AZFc region of human Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet. 2001;29(3):279–86.

    Article  CAS  PubMed  Google Scholar 

  • Lahn BT. Functional coherence of the human Y chromosome. Science. 1997;278(5338):675–80.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-W, et al. Polymorphisms associated with the DAZ genes on the human Y chromosome. Genomics. 2005;86(4):431–8.

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah S. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum Mol Genet. 1998;7(4):715–27.

    Article  CAS  PubMed  Google Scholar 

  • Marshall Graves JA. Human Y chromosome, sex determination, and spermatogenesis—a feminist view. Biol Reprod. 2000;63(3):667–76.

    Article  CAS  PubMed  Google Scholar 

  • Mazeyrat S, Saut N, Mattei MG, Mitchell MJ. RBMY evolved on the Y chromosome from a ubiquitously transcribed X-Y identical gene. Nat Genet. 1999;22(3):224–6.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CL, Harley VR. Biochemical defects in eight SRY missense mutations causing XY gonadal dysgenesis. Mol Genet Metab. 2002;77(3):217–25.

    Article  CAS  PubMed  Google Scholar 

  • Nachman MW. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 2001;17(9):481–5.

    Article  CAS  PubMed  Google Scholar 

  • Nakahori Y, Mitani K, Yamada M, Nakagome Y. A human Y-chromosome specific repeated DNA family (DYZ1) consists of a tandem array of pentanucleotides. Nucleic Acids Res. 1986;14(19):7569–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrin N, et al. DNA-binding properties of the product of the testis-determining gene and a related protein. Nature. 1991;354(6351):317–20.

    Article  CAS  PubMed  Google Scholar 

  • Oota H, Settheetham-Ishida W, Tiwawech D, Ishida T, Stoneking M. Nat Genet. 2001;29(1):20–1.

    Article  CAS  PubMed  Google Scholar 

  • Pask AJ, Harry JL, Renfree MB, Marshall Graves JA. Absence of SOX3 in the developing marsupial gonad is not consistent with a conserved role in mammalian sex determination. Genesis. 2000;27(4):145–52.

    Article  CAS  PubMed  Google Scholar 

  • Pirkkala L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 2001;15(7):1118–31.

    Article  CAS  PubMed  Google Scholar 

  • Pontiggia A, Whitfield S, Goodfellow PN, Lovell-Badge R, Bianchi ME. Evolutionary conservation in the DNA-binding and -bending properties of HMG-boxes from SRY proteins of primates. Gene. 1995;154(2):277–80.

    Article  CAS  PubMed  Google Scholar 

  • Premi S. Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation. Mol Hum Reprod. 2006;12(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  • Premi S, Srivastava J, Chandy SP, Ali S. AZFc somatic microdeletions and copy number polymorphism of the DAZ genes in human males exposed to natural background radiation. Hum Genet. 2007;121(3–4):337–46.

    Article  CAS  PubMed  Google Scholar 

  • Premi S, Srivastava J, Chandy SP, Ali S. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India. PLoS One. 2009;4(2):e4541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Premi S, Srivastava J, Epplen JT, Ali S. AZFc region of the Y chromosome shows singular structural organization. Chromosom Res. 2010;18(4):419–30.

    Article  CAS  Google Scholar 

  • Premi S, Srivastava J, Panneer G, Ali S. Startling mosaicism of the Y-chromosome and tandem duplication of the SRY and DAZ genes in patients with Turner Syndrome. PLoS One. 2008;3(11):e3796.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prosser J, et al. Degeneracy in human multicopy RBM (YRRM), a candidate spermatogenesis gene. Mamm Genome. 1996;7(11):835–42.

    Article  CAS  PubMed  Google Scholar 

  • Pryor JL, et al. Microdeletions in the Y chromosome of infertile men. N Engl J Med. 1997;336(8):534–40.

    Article  CAS  PubMed  Google Scholar 

  • Reijo R, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet. 1995;10(4):383–93.

    Article  CAS  PubMed  Google Scholar 

  • Repping S, et al. Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet. 2002;71(4):906–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Repping S, et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet. 2003;35(3):247–51.

    Article  CAS  PubMed  Google Scholar 

  • Santos FR, Pandya A, Tyler-Smith C. Reliability of DNA-based sex tests. Nat Genet. 1998;18(2):103.

    Article  CAS  PubMed  Google Scholar 

  • Saxena R, et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat Genet. 1996;14(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  • Saxena R, et al. Four DAZ genes in two clusters found in the AZFc region of the human Y chromosome. Genomics. 2000;67(3):256–67.

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, et al. Satellited Y chromosomes: structure, origin, and clinical significance. Hum Genet. 1984;67(1):72–85.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Ney M, et al. Two novel SRY missense mutations reducing DNA binding identified in XY females and their mosaic fathers. Am J Hum Genet. 1995;56(4):862–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebat J. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharp AJ, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77(1):78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JHC, Ingraham HA. Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol. 2002;16(3):529–40.

    Article  CAS  PubMed  Google Scholar 

  • Skaletsky H, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423(6942):825–37.

    Article  CAS  PubMed  Google Scholar 

  • Steinemann M, Steinmann S. Common mechanisms of Y chromosome evolution. Genetica. 2000;109(1/2):105–11.

    Article  CAS  PubMed  Google Scholar 

  • Sun C, et al. Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet. 2000;9(15):2291–6.

    Article  CAS  PubMed  Google Scholar 

  • Tessari A. Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol Hum Reprod. 2004;10(4):253–8.

    Article  CAS  PubMed  Google Scholar 

  • Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  • Ting C. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science. 1998;282(5393):1501–4.

    Article  CAS  PubMed  Google Scholar 

  • Vogt P. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5(7):933–43.

    Article  CAS  PubMed  Google Scholar 

  • Vogt PH. Report of the third international workshop on human Y Chromosome mapping 1997. Cytogenet Genome Res. 1997;79(1–2):1–20.

    Article  CAS  Google Scholar 

  • Vogt PH. Genomic heterogeneity and instability of the AZF locus on the human Y chromosome. Mol Cell Endocrinol. 2004;224(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Vollrath D, et al. The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science. 1992;258(5079):52–9.

    Article  CAS  PubMed  Google Scholar 

  • Waters PD, Duffy B, Frost CJ, Delbridge ML, Graves JAM. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80–130 million years ago. Cytogenet Genome Res. 2001;92(1–2):74–9.

    Article  CAS  Google Scholar 

  • Waters PD, et al. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution. Chromosom Res. 2005;13(4):401–10.

    Article  CAS  Google Scholar 

  • Wolfenbarger LL, Wilkinson GS. Sex-linked expression of a sexually selected trait in the stalk-eyed fly, Cyrtodiopsis dalmanni. Evolution. 2001;55(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  • Wong J, Blanco P, Affara NA. An exon map of the AZFc male infertility region of the human Y chromosome. Mamm Genome. 1999;10(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  • Wu C-I, Wyckoff GJ, Wang W. Rapid evolution of male reproductive genes in the descent of man. Nature. 2000;403(6767):304–9.

    Article  PubMed  Google Scholar 

  • Yen PH. A Long-range restriction map of deletion interval 6 of the human Y chromosome: a region frequently deleted in azoospermic males. Genomics. 1998;54(1):5–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interests

No competing interests to be disclosed.

Dr. Sanjay Premi

Dr. Premi is a proficiently trained molecular biologist with eminent experience in human genetics, biochemistry, photobiology, and environmental carcinogens. During his PhD, he pioneered in establishing a buffering effect of chromosomal alterations in offsetting the genotoxic effects of natural radioactivity. In his postdoctoral training, he discovered carcinogenicity of the pigment melanin which was completely unanticipated. He and his colleagues termed it melanin chemiexcitation which generated pyrimidine dimers in complete absence of UV radiation exposure.

Dr. Jyoti Srivastava

Dr. Srivastava is a distinguished cancer biologist with an impressive track record. She is expert in Molecular & Cellular Biology, Biochemistry, and Genomics,with a specific focus on translational medicine. She has published about 30 peer-reviewed publications, scientific reviews, and book-chapters, and received awards and recognition from respectable organizations for scientific achievements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay Premi or Jyoti Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Premi, S., Srivastava, J., Ali, S. (2017). Genomics of the Human Y Chromosome: Applications and Implications. In: Rawal, L., Ali, S. (eds) Genome Analysis and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4298-0_7

Download citation

Publish with us

Policies and ethics