Skip to main content

Fuzzy Logic-Based Pitch Angle Controller for PMSG-Based Wind Energy Conversion System

  • Conference paper
  • First Online:
Advances in Smart Grid and Renewable Energy

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 435))

Abstract

A comparative analysis of different types pitch angle controller is designed in this paper to achieve a steady output torque for stable wind turbine operation. The control techniques are implemented and developed to provide a uniform constant torque to the permanent magnet synchronous generator (PMSG). The wind system consists of a wind turbine, a pitch actuator and PMSG. The control strategy used are proportional-integral (PI) and fuzzy logic controller (FLC). The performance of the control strategies is investigated in terms of aerodynamic torque, generator speed and the generator power. The complete wind energy conversion system (WECS) is developed and tested using MATLAB/Simulink. The performance of the control strategies is evaluated under varying wind-speed condition. The performance of the pitch angle controllers is found satisfactory, but the strategy with fuzzy logic-based controller shows better performance as compared to PI controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uehara, A., et al.: A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS. IEEE Trans. Energy Convers. 26(2), 550–558 (2011)

    Article  Google Scholar 

  2. Lee, J., Kim, Y.S.: Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier. IET Renew. Power Gene. 10(2), 194–202 (2016)

    Article  Google Scholar 

  3. Tiwari, R., Ramesh Babu, N.: Recent developments of control strategies for wind energy conversion system. Renew. Sustain. Energy Rev. 66, 268–285 (2016)

    Google Scholar 

  4. Babu, N.R., Arulmozhivarman, P.: Wind energy conversion system—A techical review. J. Eng. Sci. Tech. 8, 493–507 (2013)

    Google Scholar 

  5. Han, B., Zhou, L., Yang, F., Xiang, Z.: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renew. Power Gener. 10(5), 687–693 (2016)

    Article  Google Scholar 

  6. Zhang, J., Cheng, M., Chen, Z., Fu, X.: Pitch angle control for variable speed wind turbines, In: Electric Utility Deregulation and Restructuring and Power Technologies, DRPT Third International Conference Nanjuing, 2691–2696 (2008)

    Google Scholar 

  7. Van, T.L., Nguyen, T.H., Lee, D.C.: Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems. IEEE Trans. Energy Convers. 30(2), 578–587 (2015)

    Article  Google Scholar 

  8. Jonkman, J., et al.: Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500–38060 (2009)

    Google Scholar 

  9. Yin, X., Lin, Y., Li, W., Ya-jing, G., Wang, X., Lei, P.: Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renewable Energy 81, 599–608 (2015)

    Article  Google Scholar 

  10. Soedibyo, S., Firdaus, A.A.: Design and simulation of neural network predictive controller pitch-angle in permanent magnetic synchronous generator wind turbine variable pitch system. In: Information Technology, Computer and Electrical Engineering (ICITACEE), International Conference Semarang. 346–350 (2014)

    Google Scholar 

  11. Sanjeevikumar, P., Blaabjerg, F., Siano, P., Martirano, L., Leonowicz, Z., Pandav, K.M.: PI and fuzzy control strategies for high voltage output DC-DC boost power converter—hardware implementation and analysis. In: Conference Proceedings of 16 IEEE International Conference on Environment and Electrical Engineering, Florence (Italy), (2016)

    Google Scholar 

  12. Ren, Y., Li, L., Brindley, J., Jiang, L.: Nonlinear PI control for variable pitch wind turbine. Control Eng. Practice. 50, 84–94 (2016)

    Article  Google Scholar 

  13. Chedid, R., Mrad, F., Basma, M.: Intelligent control of a class of wind energy conversion systems. IEEE Trans. Energy Convers. 14(4), 1597–1604 (1999)

    Article  Google Scholar 

  14. Tiwari, R., Ramesh Babu, N.: Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine 49(1), 462–467 (2016)

    Google Scholar 

  15. Qi, Y., Meng, Q.: The application of fuzzy PID control in pitch wind turbine. Energy Procedia. 16, 1635–1641 (2012)

    Article  Google Scholar 

  16. Sanjeevikumar, P., Daya, FJL., Blaabjerg, F., Wheeler, P., Szcześniak, P., Oleschuk, V., Ertas, A.H.: Wavelet-fuzzy speed indirect field oriented controller for three-phase AC motor drive-investigation and implementation. Int. J. Eng. Sci. Tech. 19(3), 1099–1107 (2016)

    Google Scholar 

  17. Gao, R., Gao, Z.: Pitch control for wind turbine systems using optimization, estimation and compensation. Renew. Energy. 91, 501–515 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ramesh Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Tiwari, R., Ramesh Babu, N., Sanjeevikumar, P. (2018). Fuzzy Logic-Based Pitch Angle Controller for PMSG-Based Wind Energy Conversion System. In: SenGupta, S., Zobaa, A., Sherpa, K., Bhoi, A. (eds) Advances in Smart Grid and Renewable Energy. Lecture Notes in Electrical Engineering, vol 435. Springer, Singapore. https://doi.org/10.1007/978-981-10-4286-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4286-7_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4285-0

  • Online ISBN: 978-981-10-4286-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics