Advertisement

Enzymes as Molecular Tools

  • Gayathri Valsala
  • Shiburaj Sugathan
Chapter

Abstract

Development of molecular techniques has led to revolutionary advancements in various fields of biosciences. Enzymes that modify nucleic acids are of paramount importance in these techniques. A wide range of enzymes involved in the catalysis of polymerization, ligation, cleavage, and other manipulations of DNA and RNA are currently available. Novel enzymes with improved properties are being developed by manufacturers. Molecular cloning is now a regular laboratory technique with a vast array of enzymes available from various commercial sources and to select an enzyme apt for a particular application has become a tedious task. This chapter aims to provide details on the different commercial enzymes available for routine molecular biology work, in addition to reviewing the important classes of enzymes that are used in molecular biology.

Keywords

Polymerases Nucleases Ligases Enzymes Molecular biology 

References

  1. Alsmadi O, Alkayal F, Monies D, Meyer BF (2009) Specific and complete human genome amplification with improved yield achieved by phi29 DNA polymerase and a novel primer at elevated temperature. BMC Res Note 2:48CrossRefGoogle Scholar
  2. Anfinsen CB, Haber E, Sela M, White FH (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 47(9):1309–1314CrossRefPubMedPubMedCentralGoogle Scholar
  3. Angers M, Cloutier JF, Castonguay A, Drouin R (2001) Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic Acids Res 29:E83CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baluda MA, Perbal B, Rushlow KE, Papas TS (1983) Avian myeloblastosis virus: a model for the generation of viral oncogenes from potentially oncogenic cellular genetic elements. Folia Biol 29:18–34Google Scholar
  5. Belkin S, Jannasch HW (1985) A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Arch Microbiol 141(3):181–186CrossRefGoogle Scholar
  6. Benedik MJ, Strych U (1998) Serratia marcescens and its extracellular nuclease. FEMS Microbiol Lett 165:1–13CrossRefPubMedGoogle Scholar
  7. Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940PubMedGoogle Scholar
  8. Blondal T, Hjorleifsdottir SH, Fridjonsson OF, Ævarsson A, Skirnisdottir S, Hermannsdottir AG, Kristjansson JK (2003) Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1. Nucleic Acids Res 31(24):7247–7254CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blondal T, Thorisdottir A, Unnsteinsdottir U, Hjorleifsdottir S, Ævarsson A, Ernstsson S, Kristjansson JK (2005) Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties. Nucleic Acids Res 33(1):135–142CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedPubMedCentralGoogle Scholar
  11. Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487–43490CrossRefPubMedGoogle Scholar
  12. Butler ET, Chamberlin MJ (1982) Bacteriophage SP6-specific RNA polymerase I. Isolation and characterization of the enzyme. J Biol Chem 257(10):5772–5778PubMedGoogle Scholar
  13. Cai L, Hu C, Shen S, Wang W, Huang W (2004) Characterization of bacteriophage T3 DNA ligase. J Biochem 135(3):397–403CrossRefPubMedGoogle Scholar
  14. Chamberlin M, Berg P (1962) Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A 48(1):81–94CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chamberlin MJ, Ryan T (1982) Bacteriophage DNA-dependent RNA polymerases. In: Boyer PD (ed) The enzymes, vol 15. Academic, New York, pp 87–109Google Scholar
  16. Chamberlin M, McGrath J, Waskell L (1970) New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature 228(5268):227–231CrossRefPubMedGoogle Scholar
  17. Chang LM, Bollum FJ (1986) Molecular biology of terminal transferase. CRC Crit Rev Bioeng 21:27–52Google Scholar
  18. Chase JW, Richardson CC (1974) Exonuclease VII of Escherichia coli. Mechanism of action. J Biol Chem 249:4553–4561PubMedGoogle Scholar
  19. Danna K, Nathans D (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A 68:2913CrossRefPubMedPubMedCentralGoogle Scholar
  20. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948CrossRefPubMedGoogle Scholar
  21. Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26(5):457–491CrossRefPubMedGoogle Scholar
  22. Diaz RS, Sabino EC (1998) Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase. Braz J Med Biol Res 31(10):1239–1242CrossRefPubMedGoogle Scholar
  23. Doherty AJ, Wigley DB (1999) Functional domains of an ATP-dependent DNA ligase. J Mol Biol 285(1):63–71CrossRefPubMedGoogle Scholar
  24. Doherty AJ, Ashford SR, Subramanya HS, Wigley DB (1996) Bacteriophage T7 DNA ligase overexpression, purification, crystallization, and characterization. J Biol Chem 271:11083–11089CrossRefPubMedGoogle Scholar
  25. Edmonds M (1982) Poly(A) adding enzymes. In: Boyer PD (ed) The enzymes, vol 15B. Academic, New York, pp 218–245Google Scholar
  26. Feng H, Dong L, Cao W (2006) Catalytic mechanism of endonuclease v: a catalytic and regulatory two-metal model. Biochemistry 45(34):10251–10259CrossRefPubMedGoogle Scholar
  27. Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105:657–667CrossRefPubMedGoogle Scholar
  28. Fujimura T, Tanaka T, Ohara K, Morioka H, Uesugi S, Ikehara M, Nishikawa S (1990) Secretion of recombinant ribonuclease T1 into the periplasmic space of Escherichia coli with the aid of the signal peptide of alkaline phosphatase. FEBS Lett 265(1–2):71–74CrossRefPubMedGoogle Scholar
  29. Goodwin EC, Rottman FM (1992) The use of RNase H and poly(A) junction oligonucleotides in the analysis of in vitro polyadenylation reaction products. Nucleic Acids Res 20(4):916Google Scholar
  30. Günther S, Montes M, de DA, del VM, Atencia EA, Sillero A (2002) Thermostable Pyrococcus furiosus DNA ligase catalyzes the synthesis of (di)nucleoside polyphosphates. Extremophiles 6(1):45–50CrossRefPubMedGoogle Scholar
  31. Halford SE (1971) Escherichia coli alkaline phosphatase. An analysis of transient kinetics. Biochem J 125(1):319–327Google Scholar
  32. Ho CK, Van Etten JL, Shuman S (1997) Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1. J Virol 71(3):1931–1937Google Scholar
  33. Ho CK, Wang LK, Lima CD, Shuman S (2004) Structure and mechanism of RNA ligase. Structure 12:327–339CrossRefPubMedGoogle Scholar
  34. Hofstetter H, Schambock A, Van Den Berg J, Weissmann C (1976) Specific excision of the inserted DNA segment from hybrid plasmids constructed by the poly(dA). poly (dT) method. Biochim Biophys Acta 454:587–591CrossRefPubMedGoogle Scholar
  35. Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA (1999) Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98(3):397–408CrossRefPubMedGoogle Scholar
  36. Housby JN, Thorbjarnardóttir SH, Jónsson ZO, Southern EM (2000) Optimised ligation of oligonucleotides by thermal ligases: comparison of Thermus scotoductus and Rhodothermus marinus DNA ligases to other thermophilic ligases. Nucleic Acids Res 28(3):e10CrossRefPubMedPubMedCentralGoogle Scholar
  37. Houts GE, Miyagi M, Ellis C, Beard D, Beard JW (1979) Reverse transcriptase from avian myeloblastosis virus. J Virol 29(2):517–522PubMedPubMedCentralGoogle Scholar
  38. Huang Z, Fasco MJ, Kaminsky LS (1996) Optimization of Dnase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. BioTechniques 20:1012–1014, 1016, 1018–1020Google Scholar
  39. Huber HE, Tabor S, Richardson CC (1987) Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J Biol Chem 262:16224–16232PubMedGoogle Scholar
  40. Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1992) Comparative physiological studies on hyperthermophilic Archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol 58(11):3472–3481PubMedPubMedCentralGoogle Scholar
  41. Johnson PH, Laskowski M Sr (1970) Mung bean nuclease I. II. Resistance of double stranded deoxyribonucleic acid and susceptibility of regions rich in adenosine and thymidine to enzymatic hydrolysis. J Biol Chem 245:891–898PubMedGoogle Scholar
  42. Keller W, Crouch R (1972) Degradation of DNA- RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. Proc Natl Acad Sci U S A 69:3360–3364CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kilpatrick MW, Wei CF, Gray HB Jr, Wells RD (1983) BAL 31 nuclease as a probe in concentrated salt for the B-Z DNA junction. Nucleic Acids Res 11:3811–3822CrossRefPubMedPubMedCentralGoogle Scholar
  44. Klenow H, Henningsen I (1970) Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci U S A 65(1):168–175CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kornberg A (1957) Enzymatic synthesis of deoxyribonucleic acid. Harvey Lect 53:83–112PubMedGoogle Scholar
  46. Lehman IR (1974) DNA ligase: structure, mechanism, and function. Science 186(4166):790–797CrossRefPubMedGoogle Scholar
  47. Lehman IR, Nussbaum AL (1964) The deoxyribonucleases of Escherichia coli. V. on the specificity of exonuclease I (phosphodiesterase). J Biol Chem 239:2628–2636PubMedGoogle Scholar
  48. Levin JD, Johnson AW, Demple B (1988) Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J Biol Chem 263(17):8066–8071PubMedGoogle Scholar
  49. Little JW (1981) Lambda exonuclease. Gene Amplif Anal 2:135–145PubMedGoogle Scholar
  50. Lohman GJ, Zhang Y, Zhelkovsky AM, Cantor EJ, Evans TC Jr (2014) Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase. Nucleic Acids Res 42(3):1831–1844CrossRefPubMedGoogle Scholar
  51. Luo J, Bergstrom DE, Barany F (1996) Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res 24(15):3071–3078CrossRefPubMedPubMedCentralGoogle Scholar
  52. Makeyev EV, Bamford DH (2000) Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J 19(1):124–133CrossRefPubMedPubMedCentralGoogle Scholar
  53. Makeyev EV, Bamford DH (2001) Primer-independent RNA sequencing with bacteriophage phi6 RNA polymerase and chain terminators. RNA 7:774–781CrossRefPubMedPubMedCentralGoogle Scholar
  54. Martin G, Keller W (1998) Tailing and 3′-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 4:226–230PubMedPubMedCentralGoogle Scholar
  55. McGraw NJ, Bailey JN, Cleaves GR, Dembinski DR, Gocke CR, Joliffe LK, McAllister WT (1985) Sequence and analysis of the gene for bacteriophage T3 RNA polymerase. Nucleic Acids Res 13(18):6753–6766CrossRefPubMedPubMedCentralGoogle Scholar
  56. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12(18):7035–7056CrossRefPubMedPubMedCentralGoogle Scholar
  57. Minakhin L, Nechaev S, Campbell EA, Severinov K (2001) Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription. J Bacteriol 183(1):71–76CrossRefPubMedPubMedCentralGoogle Scholar
  58. Moelling K (1974) Characterization of reverse transcriptase and RNase H from friend-murine leukemia virus. Virology 62:46–59CrossRefPubMedGoogle Scholar
  59. Mohr S, Thach R (1969) Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J Biol Chem 244:6566PubMedGoogle Scholar
  60. Mössner E, Boll M, Pfleiderer G (1980) Purification of human and bovine alkaline phosphatases by affinity chromatography. Hoppe-Seyler’s Zeitschrift fur physiologische Chemie 361(4):543–549CrossRefPubMedGoogle Scholar
  61. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(1):263–273CrossRefPubMedGoogle Scholar
  62. Murray N, Bruce S, Murray K (1979) Molecular cloning of DNA ligase gene from bacteriophage T4. II. Amplification and preparation of the gene product. J Mol Biol 132:493CrossRefPubMedGoogle Scholar
  63. Myers TW, Gelfand DH (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30(31):7661–7666CrossRefPubMedGoogle Scholar
  64. Nossal NG (1984) Prokaryotic DNA replication systems. Annu Rev Biochem 53:581–615Google Scholar
  65. Panasenko SM, Alazard RJ, Lehman IR (1978) A simple, three-step procedure for the large scale purification of DNA ligase from a hybrid λ lysogen constructed in vitro. J Biol Chem 253:4590–4592PubMedGoogle Scholar
  66. Perbal B (2008) Avian myeoloblastosis virus (AMV): only one side of the coin. Retrovirology 5:49CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pray L (2008) Restriction enzymes. Nat Educ 1(1):38Google Scholar
  68. Raines RT (1998) Ribonuclease A. Chem Rev 98(3):1045–1066CrossRefPubMedGoogle Scholar
  69. Rittié L, Perbal B (2008) Enzymes used in molecular biology: a useful guide. J Cell Commun Signal 2(1–2):25–45CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rogers SG, Weiss B (1980) Cloning of the exonuclease III gene of Escherichia coli. Gene 11:187–195CrossRefPubMedGoogle Scholar
  71. Saïda F, Odaert B, Uzan M, Bontems F (2004) First structural investigation of the restriction ribonuclease RegB: NMR spectroscopic conditions, 13C/15N double-isotopic labelling and two-dimensional heteronuclear spectra. Protein Expr Purif 34(1):158–165CrossRefPubMedGoogle Scholar
  72. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491CrossRefPubMedGoogle Scholar
  73. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stahl SJ, Zinn K (1981) Nucleotide sequence of the cloned gene for bacteriophage T7 RNA polymerase. J Mol Biol 148(4):481–485CrossRefPubMedGoogle Scholar
  75. Stein H, Hausen P (1969) Enzyme from calf thymus degrading the RNA moiety of DNA-RNA hybrids: effect on DNA-dependent RNA polymerase. Science 166:393–395CrossRefPubMedGoogle Scholar
  76. Steitz TA (1998) A mechanism for all polymerases. Nature 391:231–232CrossRefPubMedGoogle Scholar
  77. Stenesh J, Roe B (1972) DNA polymerase from mesophilic and thermophilic bacteria. I. Purification and properties from Bacillus licheniformis and Bacillus stearothermophilus. Biochim Biophys Acta 272:167CrossRefGoogle Scholar
  78. Struhl K (1997) Enzymatic manipulation of DNA and RNA. In: Bensonchanda V (ed) Current protocols in molecular biology. Wiley, Boston, pp 311–316Google Scholar
  79. Tabor S, Richardson CC (1989) Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem 264:6447–6458PubMedGoogle Scholar
  80. Tabor S, Huber HE, Richardson CC (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 262:16212–16223PubMedGoogle Scholar
  81. Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Imanaka T (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63(11):4504–4510PubMedPubMedCentralGoogle Scholar
  82. Takahashi K (1966) The structure and function of ribonuclease T1. VII. Further investigations on amino acid composition and some other properties of ribonuclease T1. J Biochem 60:239CrossRefPubMedGoogle Scholar
  83. Talmadge K, Stahl S, Gilbert W (1980) Eukaryotic signal sequence transports insulin antigen in Escherichia coli. Proc Natl Acad Sci U S A 77:3369–3373CrossRefPubMedPubMedCentralGoogle Scholar
  84. Vanecko S, Laskowski M (1961) Studies of the specificity of deoxyribonuclease I. III. Hydrolysis of chains carrying a monoesterified phosphate on carbon 5. J Biol Chem 236:3312–3316PubMedGoogle Scholar
  85. Verjee ZHM (1969) Isolation of three acid phosphatases from wheat germ. Eur J Biochem 9(3):439–444CrossRefPubMedGoogle Scholar
  86. Wang LK, Lima CD, Shuman S (2002) Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO J 21(14):3873–3880CrossRefPubMedPubMedCentralGoogle Scholar
  87. Williams RJ (2003) Restriction endonucleases: classification, properties, and applications. Mol Biotechnol 23(3):225–243CrossRefPubMedGoogle Scholar
  88. Zhelkovsky AM, McReynolds LA (2012) Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase – engineering a thermostable ATP independent enzyme. BMC Mol Biol 13(1):24CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhou MY, Gomez-Sanchez CE (2000) Universal TA cloning. Curr Issues Mol Biol 2:1–7PubMedGoogle Scholar
  90. Zinn K, DiMaio D, Maniatis T (1983) Identification of two distinct regulatory regions adjacent to the human b-interferon gene. Cell 34:865–879CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Division of MicrobiologyJawaharlal Nehru Tropical Botanic Garden and Research InstituteThiruvananthapuramIndia

Personalised recommendations