Advertisement

Therapeutic Enzymes

Chapter

Abstract

Enzymes as therapeutics hold a few advantages over non-enzymatic drugs with their amazing specificity towards targets as well as multiple substrate conversion. Development of enzyme therapeutics against rare diseases such as lysosomal storage disorders and severe combined immunodeficiency undoubtedly raised the hope of patients and improved their quality of life. Development of enzyme therapeutics against cardiovascular diseases witnessed a tremendous explosion in the past four to five decades and resulted in the development of the first approved genetically engineered drug against cardiovascular diseases (Activase®). Since then many recombinant cardiovascular drugs have been approved for clinical application. Often immunogenicity associated with enzyme drugs and the cost of production are major setbacks for their development. Despite their advantages only a few enzymes were approved by the Food and Drug Administration (FDA).

Keywords

Therapeutic enzymes Plasminogen activators Staphylokinase Nattokinase Velaglucerase alfa Alglucosidase alfa Serrapeptase Rasburicase 

References

  1. Ali MR, Salim Hossain M, Islam MA, Saiful Islam Arman M, Sarwar Raju G, Dasgupta P, Noshin TF (2014) Aspect of thrombolytic therapy: a review. Sci World J 2014:586510Google Scholar
  2. Baker SS (2008) Delayed release pancrelipase for the treatment of pancreatic exocrine insufficiency associated with cystic fibrosis. Ther Clin Risk Manag 4:1079–1084CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bayol A, Capdevielle J, Malazzi P, Buzy A, Claude Bonnet M, Colloch N, Mornon JP, Loyaux D, Ferrara P (2002) Modification of a reactive cysteine explains differences between rasburicase and Uricozyme, a natural Aspergillus flavus uricase. Biotechnol Appl Biochem 36:21–31CrossRefPubMedGoogle Scholar
  4. Beard J (1906) The action of trypsin upon the living cells of jensen’s mouse-tumour. Br Med J 1:140–141CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernik MB (1973) Increased plasminogen activator (urokinase) in tissue culture after fibrin deposition. J Clin Invest 52:823–834CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhagat S, Agarwal M, Roy V (2013) Serratiopeptidase: a systematic review of the existing evidence. Int J Surg 11:209–217CrossRefPubMedGoogle Scholar
  7. Bijvoet AG, Van Hirtum H, Kroos MA, Van de Kamp EH, Schoneveld O, Visser P, Brakenhoff JP, Weggeman M, van Corven EJ, Van der Ploeg AT, Reuser AJ (1999) Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet 8:2145–2153CrossRefPubMedGoogle Scholar
  8. Collen D, Van de Werf F (1993) Coronary thrombolysis with recombinant staphylokinase in patients with evolving myocardial infarction. Circulation 87:1850–1853CrossRefPubMedGoogle Scholar
  9. Coppola A, Di Capua M, Di Minno MND, Di Palo M, Marrone E, Ieranò P, Arturo C, Tufano A, Cerbone AM (2010) Treatment of hemophilia: a review of current advances and ongoing issues. Journal of Blood Medicine 1:183–195CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Duve C (1966) The significance of lysosomes in pathology and medicine. Proceedings of the Institute of Medicine of Chic 26:73–76Google Scholar
  11. Ea HK, Richette HK (2012) Critical appraisal of the role of pegloticase in the management of gout. Open Access Rheumatology: Research and Reviews 4:63–70CrossRefGoogle Scholar
  12. Elstein D (2011) Recent advances in treatment approaches to gaucher disease. Curr Pharm Biotechnol 12:854–860CrossRefPubMedGoogle Scholar
  13. Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2002) Pegylated arginine deiminase (ADI-SS PEG 20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 62:5443–5450PubMedGoogle Scholar
  14. Falabella AF (2006) Debridement and wound bed preparation. Dermatol Ther 19:317–325CrossRefPubMedGoogle Scholar
  15. Flohe L (1988) Superoxide dismutase for therapeutic use: clinical experience, dead ends and hopes. Mol Cell Biochem 84:123–131CrossRefPubMedGoogle Scholar
  16. Gass J, Ehren J, Strohmeier G, Isaacs I, Khosla C (2005) Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for celiac sprue therapy. Biotechnol Bioeng 92:674–684CrossRefPubMedGoogle Scholar
  17. Goa KL, Henwood JM, Stolz JF, Langley MS, Clissold SP (1990) Intravenous streptokinase. A reappraisal of its therapeutic use in acute myocardial infarction. Drugs 39:693–719CrossRefPubMedGoogle Scholar
  18. Hoffman M, Dargaud Y (2012) Mechanisms and monitoring of bypassing agent therapy. J Thromb Haemost 10:1478–1485CrossRefPubMedGoogle Scholar
  19. Honig SC (2014) Intralesional collagenase in the treatment of Peyronie’s disease. Ther Adv Urol 6:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jones AP, Wallis C (2010) Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev 3:1–66Google Scholar
  21. Kim JY, Gum SN, Paik JK, Lim HH, Kim KC, Ogasawara K, Inoue K, Park S, Jang Y, Lee JH (2008) Effects of nattokinase on blood pressure: a randomized, controlled trial. Hypertens Res 31:1583–1588CrossRefPubMedGoogle Scholar
  22. Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang FYS, Bold RJ, Kung HJ (2009) Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 69:700–708CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, Hamaoka T (2015) A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep 5:1–7CrossRefGoogle Scholar
  24. Kurtzberg J, Asselin B, Bernstein M, Buchanan GR, Pollock BH, Camitta BM (2011) Polyethylene glycol-conjugated L-asparaginase versus native L-asparaginase in combination with standard agents for children with acute lymphoblastic leukemia in second bone marrow relapse: a Children’s oncology group study (Pog 8866). J Pediatr Hematol Oncol 33:610–616CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lampe BJ, English JC (2016) Toxicological assessment of nattokinase derived from Bacillus subtilis var. natto. Food Chem Toxicol 88:87–99CrossRefPubMedGoogle Scholar
  26. Longo N, Harding CO, Burton BK, Grange DK, Vockley J, Wasserstein M, Rice GM, Dorenbaum A, Neuenburg JK, Musson DG, Gu Z, Sile S (2014) Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet 384:37–44CrossRefPubMedPubMedCentralGoogle Scholar
  27. McCallon SK, Weir D, Lantis JC (2014) Optimizing wound bed preparation with collagenase enzymatic debridement. The Journal of the American College of Clinical Wound Specialists 6:14–23CrossRefPubMedGoogle Scholar
  28. Mehta A, Beck M, Eyskens F, Feliciani C, Kantola I, Ramaswami U, Rolfs A, Rivera A, Waldek S, Germain DP (2010) Fabry disease: a review of current management strategies. Q J Med 103:641–659CrossRefGoogle Scholar
  29. Moriya N, Nakata M, Nakamura M, Takaoka M, Iwasa S, Kato K, Kakinuma A (1994) Intestinal absorption of serrapeptase (TSP) in rats. Biotechnol Appl Biochem 20:101–108PubMedGoogle Scholar
  30. Nagai N, Demarsin E, Van Hoef B, Wouters S, Cingolani D, Laroche Y, Collen D (2003) Recombinant human microplasmin: production and potential therapeutic properties. J Thromb Haemost 1:307–313CrossRefPubMedGoogle Scholar
  31. Noh H, Lee JI (2014) Current and potential therapeutic strategies for mucopolysaccharidoses. Journal of Clinical Pharmacology and Therapeutics 39:215–224CrossRefGoogle Scholar
  32. Pan R, Zhang ZJ, He RQ, Pan R, Zhang ZJ, He RQ (2010) Earthworm Protease. Applied and Environmental Soil Science 2010:e294258CrossRefGoogle Scholar
  33. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221CrossRefPubMedGoogle Scholar
  34. Peters RT, Low SC, Kamphaus GD, Dumont JA, Amari JV, Lu Q, Zarbis-Papastoitsis G, Reidy TJ, Merricks EP, Nichols TC, Bitonti AJ (2010) Prolonged activity of factor IX as a monomeric fc fusion protein. Blood 115:2057–2064CrossRefPubMedGoogle Scholar
  35. Peters RT, Toby G, Lu Q, Liu T, Kulman JD, Low SC, Bitonti AJ, Pierce GF (2013) Biochemical and functional characterization of a recombinant monomeric factor VIII-fc fusion protein. J Thromb Haemost 11:132–141CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shan L, Marti T, Sollid LM, Gray GM, Khosla C (2004) Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 383:311–318CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shapira E, Giladi A, Neuman Z (1973) Use of water-insoluble papain (WIP) for debridement of burn eschar and necrotic tissue. Preliminary report. Plast Reconstr Surg 52:279–281CrossRefPubMedGoogle Scholar
  38. Sherwood RF, Melton RG, Alwan SM, Hughes P (1985) Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. Use of a novel triazine dye affinity method. Eur J Biochem 148:447–453CrossRefPubMedGoogle Scholar
  39. Smalling RW (1996) Molecular biology of plasminogen activators: what are the clinical implications of drug design? Am J Cardiol 78:2–7CrossRefPubMedGoogle Scholar
  40. Smith RA, Dupe RJ, English PD, Green J (1981) Fibrinolysis with acyl-enzymes: a new approach to thrombolytic therapy. Nature 290:505–508CrossRefPubMedGoogle Scholar
  41. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA (2012) Enzymatic Vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615CrossRefPubMedGoogle Scholar
  42. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43:1110–1111CrossRefPubMedGoogle Scholar
  43. Van Hove JL, Yang HW, Wu JY, Brady RO, Chen YT (1996) High-level production of recombinant human lysosomal acid alpha-glucosidase in Chinese hamster ovary cells which targets to heart muscle and corrects glycogen accumulation in fibroblasts from patients with pompe disease. Proceedings of the National Academy Sciences of United States of America 93:65–70CrossRefGoogle Scholar
  44. White MJV, Glenn M, Gomer RH (2013) Trypsin potentiates human fibrocyte differentiation. PLoS One 8:e70795CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zamarron C, Lijnen HR, Van Hoef B, Collen D (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase--I. Fibrinolytic and fibrinogenolytic properties in human plasma in vitro of urokinases obtained from human urine or by recombinant DNA technology. Thromb Haemost 52:19–23PubMedGoogle Scholar
  46. Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S, Aviezer D (2011) Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for gaucher disease. Blood 118:5767–5773CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Biotechnology and Microbiology, School of Life SciencesKannur UniversityKannurIndia
  2. 2.Inter University Centre for Bioscience, Department of Biotechnology and Microbiology, School of Life SciencesKannur UniversityKannurIndia

Personalised recommendations