Skip to main content

Quorum Quenching Compounds from Natural Sources

  • Chapter
  • First Online:
Bioresources and Bioprocess in Biotechnology

Abstract

Quorum sensing is a process of bacterial communication system wherein the production and secretion of small signaling molecules known as autoinducers enables the bacteria to express specific genes at particular population densities. Quorum quenching (QQ) can be used as an alternative approach to regulate pathogenicity. Well-established QQ strategies include amide bond hydrolysis, lactone hydrolysis, paraoxonase enzymes, and QQ modification of acyl chain. Plants in general lack advanced immune systems, and may have evolved to produce QQ compounds to combat with plant invading pathogens. Most common sources of QQ compounds in marine environment are bacteria, fungi, algae, bryozoan, corals, and sponges. Marine cyanobacteria have become one among the best source for obtaining biologically active and structurally unique QQ natural products. QQ compounds are being innovated as alternatives of antibiotics to treat pathogenic infections. Marine ecosystem is a unique and unexplored hotspot for the development of new derivatives of potential QQ compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abed RM, Dobretsov S, Al-Fori M, Gunasekera SP, Sudesh K, Paul VJ (2013) Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Ind Microbiol Biotechnol 40:759–772

    Article  CAS  PubMed  Google Scholar 

  • Adak S, Upadrasta L, Kumar S, Soni R, Banerjee R (2011) Quorum quenching–an alternative antimicrobial therapeutics. In: Mendez-Vilas (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 586–593

    Google Scholar 

  • Adonizio A, Dawlaty J, Ausubel FM, Clardy J, Mathee K (2008) Ellagitannins from Conocarpus erectus exhibit anti-quorum sensing activity against Pseudomonas aeruginosa. Planta Med 74:1035–1035

    Article  Google Scholar 

  • Amaya S, Pereira JA, Borkosky SA, Valdez JC, Bardon A, Arena ME (2012) Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine 19:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786. doi:10.1111/j.1365-2958.1993.tb01737.x

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286. doi:10.1111/j.1365-2958.1994.tb00422.x

    Article  CAS  PubMed  Google Scholar 

  • Bhargava N, Sharma P, Capalash N (2010) Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 36:349–360

    Article  CAS  PubMed  Google Scholar 

  • Brackman G, Celen S, Hillaert U, van Calenbergh S, Cos P, Maes L, Nelis HJ, Coenye T (2011) Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of vibrio spp. PLoS One 6:e16084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzales JE, Haines DC (2007) Biochemistry 46:14429–14437

    Article  CAS  PubMed  Google Scholar 

  • Clark BR, Engene N, Teasdale ME, Rowley DC, Matainaho T, Valeriote FA, Gerwick WH (2008) Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 71:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    Article  CAS  PubMed  Google Scholar 

  • Davis TH (2004) Biography of E.P. Greenberg. Proc Natl Acad Sci U S A 101(45):15830–15832. http://doi.org/10.1073/pnas.0407738101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 21(12):619–624

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W, Bossier P (2007) The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 9:2486–2495

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72:6419–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ (2010) Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2:739–744

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond Ser B Biol Sci 362:1201–1211

    Article  CAS  Google Scholar 

  • Duncan MC, Wong WR, Dupzyk AJ, Bray WM, Linington RG, Auerbuch V (2014) An NF-kappaB-based high-throughput screen identifies piericidins as inhibitors of the Yersinia pseudotuberculosis type III secretion system. Antimicrob Agents Chemother 58:1118–1126

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, Villegas Pañeda AG, Hashimoto T, Maeda T, Wood TK (2013) Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathogens Dis 68(1):8–11. http://doi.org/10.1111/2049-632X.12039

    Article  Google Scholar 

  • Giménez-Bastida JA, Truchado P, Larrosa M, Espín JC, Tomás-Barberán FA, Allende A, García-Conesa MT (2012) Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit quorum sensing in Yersinia enterocolitica: phenotypic response and associated molecular changes. Food Chem 132:1465–1474

    Article  Google Scholar 

  • Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682

    Article  CAS  PubMed  Google Scholar 

  • González JE, Keshavan ND (2006) Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70:859–875

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson JR (2003) The classes of natural product and their isolation. In: Abel EW (ed) Natural products: the secondary metabolites. Royal Society of Chemistry, Cambridge, pp 1–34

    Chapter  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  CAS  PubMed  Google Scholar 

  • Henke J, Bassler B (2004) Bacterial social engagements. Trends Cell Biol 14(11):648–656

    Article  CAS  PubMed  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F et al (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann GF, Sartorio R, Lee SH, Mee JM, Altobell LJ, Kujawa DP, Jeffries E, Clapham B, Meijler MM, Janda KD (2006) Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128(9):2802–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann GF, Park J, Mee JM, Ulevitch RJ, Janda KD (2008) The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol Immunol 45:2710–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V, Orlando F, Shoham M et al (2008) Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol 73:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M, de Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13:8

    Article  Google Scholar 

  • Koh CL, Sam CK, Yin WF, Tan L, Krishnan T, Chong Y, Chan KG (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13(5):6217–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 10(5):547–562. http://doi.org/10.7150/ijbs.9028

    Article  CAS  Google Scholar 

  • LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signaling. Trends Microbiol 6(7):288–294

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesic B, Lepine F, Déziel E, Zhang J, Zhang Q, Padfield K, Castonguay MH, Milot S, Stachel S, Tzika AA, Tompkins RG, Rahme LG (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:e126. doi:10.1371/journal.ppat.0030126

    Article  PubMed Central  Google Scholar 

  • Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci U S A 108:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansson M, Nielsen A, Kjaerulff L, Gotfredsen CH, Wietz M, Ingmer H, Gram L, Larsen TO (2011) Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Mar Drugs 9:2537–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam MM (2014) Quorum sensing in bacteria and a glance on Pseudomonas aeruginosa. Clin Microbiol 3(4):1–10. http://doi.org/10.4172/2327-5073.1000156

    Article  Google Scholar 

  • Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012) 2,5-piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:679–686

    Article  CAS  PubMed  Google Scholar 

  • Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phyto-chemicals. Int J Mol Sci 14:12607–12619

    Article  PubMed  PubMed Central  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43(4):496–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu C, Afre S, Gilbert ES (2006) Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–494

    Article  CAS  PubMed  Google Scholar 

  • Ooka K, Fukumoto A, Yamanaka T, Shimada K, Ishihara R, Anzai Y, Kato F (2013) Piericidins, novel quorum-sensing inhibitors against Chromobacterium violaceum CV026, from Streptomyces sp. TOHO-Y209 and TOHO-O348. Open J Med Chem 3:93–99

    Article  Google Scholar 

  • Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, Ulevitch RJ, Janda KD (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paza C, Carcamo G, Silva M, Becerra J, Urrutia H, Sossa K (2013) Drimendiol, a drimane sesquiterpene with quorum sensing inhibition activity. Nat Prod Commun 8:147–148

    PubMed  Google Scholar 

  • Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M et al (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27:350–359

    Article  CAS  PubMed  Google Scholar 

  • Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217

    Article  CAS  PubMed  Google Scholar 

  • Romero M, Martin-Cuadrado AB, Otero A (2012a) Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 78:6345–6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero ML, Acuña A, Otero A (2012b) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6:2–12

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Kavita K, Prabhakaran R, Jha B (2013) Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. Biofouling 29:855–867

    Article  CAS  PubMed  Google Scholar 

  • Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PØ, Rasmussen TB, Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K, Zhang XH (2014) Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12(6):3245–3282. http://doi.org/10.3390/md12063245

    Article  PubMed  PubMed Central  Google Scholar 

  • Tay S, Yew W (2013) Development of quorum-based anti-virulence therapeutics targeting gram-negative bacterial pathogens. Int J Mol Sci 14(8):16570–16599. http://doi.org/10.3390/ijms140816570

    Article  PubMed  PubMed Central  Google Scholar 

  • Teasdale ME, Liu JY, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572

    Article  CAS  PubMed  Google Scholar 

  • Tinh NTN, Linh ND, Wood TK, Dierckens K, Sorgeloos P, Bossier P (2007) Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. J Appl Microbiol 103:194–203

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem 10(2):205–216

    Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76:243–253

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stevigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132

    Article  CAS  PubMed  Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527

    CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Byun T, Deussen HJ, Duke KR (2003) Degradation of N-acylhomoserine lactones, the bacterial quorum sensing molecules, by acylase. J Biotechnol 101:89–96

    Article  CAS  PubMed  Google Scholar 

  • Yada S, Kamalesh B, Sonwane S, Guptha I, Swetha RK (2015) Quorum sensing inhibition, relevance to periodontics. J Int Oral Health 7(1):67–69

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Seghal Kiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Seghal Kiran, G., Hassan, S., Sajayan, A., Selvin, J. (2017). Quorum Quenching Compounds from Natural Sources. In: Sugathan, S., Pradeep, N., Abdulhameed, S. (eds) Bioresources and Bioprocess in Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4284-3_14

Download citation

Publish with us

Policies and ethics