Quorum Quenching Compounds from Natural Sources

  • G. Seghal KiranEmail author
  • Saqib Hassan
  • Arya Sajayan
  • Joseph Selvin


Quorum sensing is a process of bacterial communication system wherein the production and secretion of small signaling molecules known as autoinducers enables the bacteria to express specific genes at particular population densities. Quorum quenching (QQ) can be used as an alternative approach to regulate pathogenicity. Well-established QQ strategies include amide bond hydrolysis, lactone hydrolysis, paraoxonase enzymes, and QQ modification of acyl chain. Plants in general lack advanced immune systems, and may have evolved to produce QQ compounds to combat with plant invading pathogens. Most common sources of QQ compounds in marine environment are bacteria, fungi, algae, bryozoan, corals, and sponges. Marine cyanobacteria have become one among the best source for obtaining biologically active and structurally unique QQ natural products. QQ compounds are being innovated as alternatives of antibiotics to treat pathogenic infections. Marine ecosystem is a unique and unexplored hotspot for the development of new derivatives of potential QQ compounds.


Quorum Quenching Biofilm Motility Virulence Signalling molecules 


  1. Abed RM, Dobretsov S, Al-Fori M, Gunasekera SP, Sudesh K, Paul VJ (2013) Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Ind Microbiol Biotechnol 40:759–772CrossRefPubMedGoogle Scholar
  2. Adak S, Upadrasta L, Kumar S, Soni R, Banerjee R (2011) Quorum quenching–an alternative antimicrobial therapeutics. In: Mendez-Vilas (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 586–593Google Scholar
  3. Adonizio A, Dawlaty J, Ausubel FM, Clardy J, Mathee K (2008) Ellagitannins from Conocarpus erectus exhibit anti-quorum sensing activity against Pseudomonas aeruginosa. Planta Med 74:1035–1035CrossRefGoogle Scholar
  4. Amaya S, Pereira JA, Borkosky SA, Valdez JC, Bardon A, Arena ME (2012) Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine 19:1173–1177CrossRefPubMedGoogle Scholar
  5. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627CrossRefPubMedGoogle Scholar
  6. Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786. doi: 10.1111/j.1365-2958.1993.tb01737.x CrossRefPubMedGoogle Scholar
  7. Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286. doi: 10.1111/j.1365-2958.1994.tb00422.x CrossRefPubMedGoogle Scholar
  8. Bhargava N, Sharma P, Capalash N (2010) Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 36:349–360CrossRefPubMedGoogle Scholar
  9. Brackman G, Celen S, Hillaert U, van Calenbergh S, Cos P, Maes L, Nelis HJ, Coenye T (2011) Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of vibrio spp. PLoS One 6:e16084CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzales JE, Haines DC (2007) Biochemistry 46:14429–14437CrossRefPubMedGoogle Scholar
  11. Clark BR, Engene N, Teasdale ME, Rowley DC, Matainaho T, Valeriote FA, Gerwick WH (2008) Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 71:1530–1537CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906CrossRefPubMedGoogle Scholar
  13. Davis TH (2004) Biography of E.P. Greenberg. Proc Natl Acad Sci U S A 101(45):15830–15832. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 21(12):619–624CrossRefPubMedGoogle Scholar
  15. Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W, Bossier P (2007) The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 9:2486–2495CrossRefPubMedGoogle Scholar
  16. Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72:6419–6423CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ (2010) Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2:739–744CrossRefPubMedGoogle Scholar
  18. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817CrossRefPubMedGoogle Scholar
  19. Dong Y, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond Ser B Biol Sci 362:1201–1211CrossRefGoogle Scholar
  20. Duncan MC, Wong WR, Dupzyk AJ, Bray WM, Linington RG, Auerbuch V (2014) An NF-kappaB-based high-throughput screen identifies piericidins as inhibitors of the Yersinia pseudotuberculosis type III secretion system. Antimicrob Agents Chemother 58:1118–1126CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  22. García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, Villegas Pañeda AG, Hashimoto T, Maeda T, Wood TK (2013) Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathogens Dis 68(1):8–11. CrossRefGoogle Scholar
  23. Giménez-Bastida JA, Truchado P, Larrosa M, Espín JC, Tomás-Barberán FA, Allende A, García-Conesa MT (2012) Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit quorum sensing in Yersinia enterocolitica: phenotypic response and associated molecular changes. Food Chem 132:1465–1474CrossRefGoogle Scholar
  24. Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682CrossRefPubMedGoogle Scholar
  25. González JE, Keshavan ND (2006) Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70:859–875CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hanson JR (2003) The classes of natural product and their isolation. In: Abel EW (ed) Natural products: the secondary metabolites. Royal Society of Chemistry, Cambridge, pp 1–34CrossRefGoogle Scholar
  27. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202CrossRefPubMedGoogle Scholar
  28. Henke J, Bassler B (2004) Bacterial social engagements. Trends Cell Biol 14(11):648–656CrossRefPubMedGoogle Scholar
  29. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307CrossRefPubMedPubMedCentralGoogle Scholar
  30. Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F et al (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kaufmann GF, Sartorio R, Lee SH, Mee JM, Altobell LJ, Kujawa DP, Jeffries E, Clapham B, Meijler MM, Janda KD (2006) Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128(9):2802–2803CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kaufmann GF, Park J, Mee JM, Ulevitch RJ, Janda KD (2008) The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol Immunol 45:2710–2714CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V, Orlando F, Shoham M et al (2008) Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol 73:1578–1586CrossRefPubMedGoogle Scholar
  35. Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M, de Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13:8CrossRefGoogle Scholar
  36. Koh CL, Sam CK, Yin WF, Tan L, Krishnan T, Chong Y, Chan KG (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13(5):6217–6228CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 10(5):547–562. CrossRefGoogle Scholar
  38. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signaling. Trends Microbiol 6(7):288–294CrossRefPubMedGoogle Scholar
  40. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lesic B, Lepine F, Déziel E, Zhang J, Zhang Q, Padfield K, Castonguay MH, Milot S, Stachel S, Tzika AA, Tompkins RG, Rahme LG (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:e126. doi: 10.1371/journal.ppat.0030126 CrossRefPubMedCentralGoogle Scholar
  42. Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci U S A 108:3360–3365CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mansson M, Nielsen A, Kjaerulff L, Gotfredsen CH, Wietz M, Ingmer H, Gram L, Larsen TO (2011) Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Mar Drugs 9:2537–2552CrossRefPubMedPubMedCentralGoogle Scholar
  44. Moghaddam MM (2014) Quorum sensing in bacteria and a glance on Pseudomonas aeruginosa. Clin Microbiol 3(4):1–10. CrossRefGoogle Scholar
  45. Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012) 2,5-piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:679–686CrossRefPubMedGoogle Scholar
  46. Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phyto-chemicals. Int J Mol Sci 14:12607–12619CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43(4):496–518PubMedPubMedCentralGoogle Scholar
  48. Niu C, Afre S, Gilbert ES (2006) Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–494CrossRefPubMedGoogle Scholar
  49. Ooka K, Fukumoto A, Yamanaka T, Shimada K, Ishihara R, Anzai Y, Kato F (2013) Piericidins, novel quorum-sensing inhibitors against Chromobacterium violaceum CV026, from Streptomyces sp. TOHO-Y209 and TOHO-O348. Open J Med Chem 3:93–99CrossRefGoogle Scholar
  50. Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641CrossRefPubMedPubMedCentralGoogle Scholar
  51. Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, Ulevitch RJ, Janda KD (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127CrossRefPubMedPubMedCentralGoogle Scholar
  52. Paza C, Carcamo G, Silva M, Becerra J, Urrutia H, Sossa K (2013) Drimendiol, a drimane sesquiterpene with quorum sensing inhibition activity. Nat Prod Commun 8:147–148PubMedGoogle Scholar
  53. Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M et al (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27:350–359CrossRefPubMedGoogle Scholar
  54. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217CrossRefPubMedGoogle Scholar
  55. Romero M, Martin-Cuadrado AB, Otero A (2012a) Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 78:6345–6348CrossRefPubMedPubMedCentralGoogle Scholar
  56. Romero ML, Acuña A, Otero A (2012b) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6:2–12CrossRefPubMedGoogle Scholar
  57. Singh VK, Kavita K, Prabhakaran R, Jha B (2013) Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. Biofouling 29:855–867CrossRefPubMedGoogle Scholar
  58. Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PØ, Rasmussen TB, Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tang K, Zhang XH (2014) Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12(6):3245–3282. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tay S, Yew W (2013) Development of quorum-based anti-virulence therapeutics targeting gram-negative bacterial pathogens. Int J Mol Sci 14(8):16570–16599. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Teasdale ME, Liu JY, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572CrossRefPubMedGoogle Scholar
  62. Tinh NTN, Linh ND, Wood TK, Dierckens K, Sorgeloos P, Bossier P (2007) Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. J Appl Microbiol 103:194–203CrossRefPubMedGoogle Scholar
  63. Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322CrossRefPubMedGoogle Scholar
  64. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem 10(2):205–216Google Scholar
  65. Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76:243–253CrossRefPubMedGoogle Scholar
  66. Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stevigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132CrossRefPubMedGoogle Scholar
  67. Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527PubMedGoogle Scholar
  68. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346CrossRefPubMedGoogle Scholar
  69. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061CrossRefPubMedGoogle Scholar
  70. Xu F, Byun T, Deussen HJ, Duke KR (2003) Degradation of N-acylhomoserine lactones, the bacterial quorum sensing molecules, by acylase. J Biotechnol 101:89–96CrossRefPubMedGoogle Scholar
  71. Yada S, Kamalesh B, Sonwane S, Guptha I, Swetha RK (2015) Quorum sensing inhibition, relevance to periodontics. J Int Oral Health 7(1):67–69PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • G. Seghal Kiran
    • 1
    Email author
  • Saqib Hassan
    • 2
  • Arya Sajayan
    • 1
  • Joseph Selvin
    • 2
  1. 1.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia
  2. 2.Department of Microbiology, School of Life SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations