Advertisement

Antimicrobials from Microbes

Chapter

Abstract

Microorganisms are potential sources of antimicrobial substances, including antiseptics, disinfectants and antibiotics, used to prevent the growth and spread of harmful microbes. Most of the antimicrobials produced by microorganisms are secondary metabolites. The antimicrobials produced by microorganisms fall under chemical classes like Polyketides, terpenes, shikimates, peptides and alkaloids. Microorganisms differ in their potential to produce antimicrobial substances. Bacteria that belong to the genus Streptomyces, Bacillus and Pseudomonas are prolific producers of antimicrobials. Myxobacteria and filamentous fungi are also producers of important antimicrobials among other prokaryotes. The development of drug-resistant bacteria has resulted in the search for novel antimicrobials from hitherto untapped microbial sources such as uncultured bacteria.

Keywords

Antimicrobials Secondary metabolites Antimicrobial resistance Antibiotics Lantibiotics Pyocins Polyketides Teixobactin 

References

  1. Ahn JW, Jang KH, Chung SC, Oh KB, Shin J (2008) Sorangiadenosine, a new sesquiterpene Adenoside from the Myxobacterium Sorangium cellulosum. Org Lett 10:1167–1169CrossRefPubMedGoogle Scholar
  2. Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health B 42:441–451CrossRefPubMedGoogle Scholar
  3. Bassarello C, Lazzaroni S, Bifulco G, Lo CP, Iacobellis NS, Riccio R, Gomez-Paloma L, Evidente A (2004) Tolaasins A−E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod 67:811–816CrossRefPubMedGoogle Scholar
  4. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRefPubMedGoogle Scholar
  5. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18:11338–11376CrossRefPubMedGoogle Scholar
  6. Coraiola M, Paletti R, Fiore A, Fogliano V, Dalla Serra M (2008) Fuscopeptins, antimicrobial lipodepsipeptides from Pseudomonas fuscovaginae, are channel forming peptides active on biological and model membranes. J Pept Sci 14:496–502CrossRefPubMedGoogle Scholar
  7. de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2, 4-diacetylphloroglucinol on pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975CrossRefPubMedGoogle Scholar
  8. El-Gendy MMA, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157CrossRefPubMedGoogle Scholar
  9. Felder S, Kehraus S, Neu E, Bierbaum G, Schäberle TF, König GM (2013) Salimyxins and enhygrolides: antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhygromyxa salina. Chembiochem 14:1363–1371CrossRefPubMedGoogle Scholar
  10. Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70CrossRefPubMedGoogle Scholar
  11. Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H, Akopian T, Mueller A, Epstein S, Goldberg A, Clardy J, Lewis K (2014) Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Cell Chem Biol 21:509–518. doi: 10.1038/ja.2005.1 Google Scholar
  12. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  13. Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JEM, Goodfellow M, Beil W, Krämer M, Imhoff JF, Süssmuth RD, Fiedle HP (2009) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104CrossRefPubMedGoogle Scholar
  14. Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70:1060–1063CrossRefPubMedGoogle Scholar
  15. Jansen R, Kunze B, Reichenbach H, Höfle G (2003) Chondrochloren A and B, new β-amino Styrenes from Chondromyces crocatus (myxobacteria). Eur J Org Chem 2003:2684–2689CrossRefGoogle Scholar
  16. Kunze B, Reck M, Dötsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, Wagner-Döbler I (2010) Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol 10:1–13CrossRefGoogle Scholar
  17. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liang H (2008) Sordarin, an antifungal agent with a unique mode of action. Beilstein J Org Chem 4:1–14CrossRefGoogle Scholar
  19. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459CrossRefPubMedGoogle Scholar
  20. Luo Y, Ruan LF, Zhao CM, Wang CX, Peng DH, Sun M (2011) Validation of the intact Zwittermicin a biosynthetic gene cluster and discovery of a complementary resistance mechanism in Bacillus thuringiensis. Antimicrob Agents Chemother 55:4161–4169Google Scholar
  21. Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335CrossRefPubMedGoogle Scholar
  22. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510CrossRefPubMedGoogle Scholar
  23. Mondol MAM, Kim JH, Lee HS, Lee Y, Shin HJ (2011) Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg Med Chem Lett 21:3832–3835CrossRefPubMedGoogle Scholar
  24. Ostash B, Walker S (2010) Moenomycin family antibiotics: chemical synthesis, biosynthesis, biological activity. Nat Prod Rep 27:1594–1617CrossRefPubMedPubMedCentralGoogle Scholar
  25. Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother 52:612–618CrossRefPubMedGoogle Scholar
  26. Polikanov YS, Osterman IA, Szal T, Tashlitsky VN, Serebryakova MV, Kusochek P, Bulkley D, Malanicheva IA, Efimenko TA, Efremenkova OV, Konevega AL, Shaw KJ, Bogdanov AA, Rodnina MV, Dontsova OA, Mankin AS, Steitz TA, Sergiev PV (2014) Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome. Mol Cell 56:531–540CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schäberle TF, Lohr F, Schmitz A, König GM (2014) Antibiotics from myxobacteria. Nat Prod Rep 31:953–972CrossRefPubMedGoogle Scholar
  28. Steinmetz H, Irschik H, Kunze B, Reichenbach H, Höfle G, Jansen R (2007) Thuggacins, macrolide antibiotics active against Mycobacterium tuberculosis: isolation from myxobacteria, structure elucidation, conformation analysis and biosynthesis. Chemistry 13:5822–5832CrossRefPubMedGoogle Scholar
  29. Steinmetz H, Mohr KI, Zander W, Jansen R, Gerth K, Müller R (2012) Indiacens A and B: prenyl indoles from the myxobacterium Sandaracinus amylolyticus. J Nat Prod 75:1803–1805CrossRefPubMedGoogle Scholar
  30. Symkenberg G, Kalesse M (2014) Structure elucidation and total synthesis of kulkenon. Angew Chem Int Ed 53:1795–1798CrossRefGoogle Scholar
  31. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRefPubMedGoogle Scholar
  32. Zander W, Gerth K, Mohr KI, Kessler W, Jansen R, Müller R (2011) Roimatacene: an antibiotic against gram-negative bacteria isolated from Cystobacter ferrugineus Cb G35 (myxobacteria). Chemistry 17:7875–7881CrossRefPubMedGoogle Scholar
  33. Zander W, Irschik H, Augustiniak H, Herrmann M, Jansen R, Steinmetz H, Gerth K, Kessler W, Kalesse M, Höfle G, Müller R (2012) Sulfangolids, macrolide sulfate esters from Sorangium cellulosum. Chemistry 18:6264–6271CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Biotechnology and Microbiology, School of Life SciencesKannur UniversityKannurIndia

Personalised recommendations