Skip to main content

Status of Soil Pollution in India

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 10))

Abstract

Industrial sector in India is witnessing rapid growth since the last decade of twentieth century with reforms in economic laws and with establishment of special economic zones (SEZ). Such rapid industrial growth has also increased threat to the environment. In spite of great difficulty in its remediation in comparison with polluted air and water, soil pollution as a threat to human life is by and large ignored at national level in India due to lack of comprehensive information on the subject. Though coordinated effort on assessment of soil pollution is absent at national level, sporadic information has been generated by several researchers on various aspects of pollution affecting soil quality. This chapter analyses these information and attempts to assess the quantum of threat being faced by agroecosystem in the country. It indicates that soil resources are facing threats from deliberate use of contaminated organics, amendment materials and irrigation water or from atmospheric depositions, spillage of effluents etc. Nature pollutants varies from salts, toxic metals, metalloids, persistent organics with varying degree of toxicity and may be of both industrial and geogenic origins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari S, Gupta SK, Banerjee SK (1993) Heavy metals content of city sewage and sludge. J Indian Soc Soil Sci 41:170–172

    CAS  Google Scholar 

  • Adhikari T, Wanjari RH, Biswas AK et al (2012) Final Report of the project entitled “Impact assessment of continuous fertilization on heavy metals and microbial diversity in soils under long-term fertilizer experiment” (Submitted to Ministry of Forest and Environment, New Delhi), p 175

    Google Scholar 

  • Alam MG, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308:83–96

    Article  CAS  Google Scholar 

  • Ansari AA, Singh IB, Tobschall HJ (1999) Status of anthropogenically induced metal pollution in the Kanpur-Unnao industrial region of the ganga plain, India. Environ Geol 38:25–33

    Article  CAS  Google Scholar 

  • ATSDR (2001) Toxicological profile for selenium. Agency for Toxic Substances and Disease Registry, U.S. Department of Health And Human Services, Public Health Service, Division of Toxicology/Toxicology Information Branch, Atlanta, Georgia

    Google Scholar 

  • ATSDR (2005) Toxicological profile for nickel. Agency for Toxic Substances and Disease Registry, U.S. Department of Health And Human Services, Public Health Service, Division of Toxicology/Toxicology Information Branch, Atlanta, Georgia

    Google Scholar 

  • Balagangatharathilagar M, Swarup D, Patra RC, Dwivedi SK (2006) Blood lead level in dogs from urban and rural areas of India and its relation to animal and environmental variables. Sci Total Environ 359:130–134

    Article  CAS  Google Scholar 

  • Balakrishnan M, Antony SA et al (2008) Impact of dyeing industrial effluents on the groundwater quality in Kancheepuram (India). Indian J Sci Technol 1:1–8

    Google Scholar 

  • Beijer K, Gao K, Jonsson ME et al (2013) Effluent from drug manufacturing affects cytochrome P4501 regulation and function in fish. Chemosphere 90:1149–1157

    Article  CAS  Google Scholar 

  • Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in groundwaters and soils of thane region of Maharashtra, India. Environ Monit Assess 173:643–652

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Transfer of arsenic from groundwater and Paddy soil to Rice plant (Oryza sativa L.): a micro level study in West Bengal, India. World J Agric Sci 5:425–431

    CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2010) Arsenic contamination in rice, wheat, pulses, and vegetables: a study inan arsenic affected area of West Bengal, India. Water Air Soil Pollut 213:3–13

    Article  CAS  Google Scholar 

  • Bhupal Raj G, Singh MV, Patnaik MC, Khadke KM (2009) Four decades of research on micro- and secondary- nutrients and pollutant elements in Andhra Pradesh. Research Bulletin. AICRP Micro- and Secondary-Nutrients and Pollutant Elements in Soils and Plants, IISS, Bhopal, pp 1–132

    Google Scholar 

  • BIS (2012) Indian standard: drinking water-specification, 2nd revision, ICS 13.060.20. Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Business Standard (2015) NGT flays UP, MP government for pollution in Singrauli. http://www.business-standard.com/article/pti-stories/ngt-flays-up-mp-government-for-pollution-in-singrauli-115100600689_1.html#. Accessed 6 Oct 2015

  • CGWB (1999) High incidence of arsenic in groundwater in West Bengal. Central Ground Water Board, India, Ministry of Water Resources, Government of India

    Google Scholar 

  • Chakraborti D, Biswas BK, Chowdhury TR et al (1999) Arsenic groundwater contamination and sufferings of people in Rajnandgaon, Madhya Pradesh, India. Curr Sci India 77:502–504

    CAS  Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S et al (2003) Arsenic groundwater contamination in middle ganga plain, Bihar, India: a future danger? Environ Health Perspect 111:1194–1201

    Article  CAS  Google Scholar 

  • Chakraborti D, Das B, Rahman MM et al (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53:542–551. doi:10.1002/mnfr.200700517

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Murrill M et al (2013) Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of northeastern Karnataka, India. J Hazard Mater 262:1048–1055

    Article  CAS  Google Scholar 

  • Chetia M, Chatterjee S, Banerjee S et al (2011) Groundwater arsenic contamination in Brahamputra river basin: a water quality assessment in Golaghat (Assam), India. Environ Monit Assess 173:371–385

    Article  CAS  Google Scholar 

  • Choudhury UK, Rahaman MM, Mondal BKGK et al (2001) Groundwater arsenic contamination and sufferings of people in West Bengal, India and Bangladesh. Environ Sci 8:393–415

    Google Scholar 

  • CPCB (2009) Comprehensive Environmental Assessment of Industrial Clusters. Ecological Impact Assessment Series: EIAS/5/2009–2010. Central Pollution Control Board, Ministry of Environment and Forest, Government of India

    Google Scholar 

  • CPCB (2011) Report on SPM characterization for heavy metals concentration: Study areas-Raipur & Raigarh in Chhatisgarh state 2010–2011. Central Pollution Control Board, Bhopal. http://cpcb.nic.in/SPMCharacterization.pdf Accessed 19 Aug 2016

  • CWGB (2013) Central Ground Water Board, Govt. of India. http://gis2.nic.in/cgwb/Gemsdata.aspx. Accessed 16 Jan 2013

  • Dahal BM, Fuerhacker M, Mentler A (2008) Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environ Pollut 155:157–163

    Article  CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK et al (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  Google Scholar 

  • Devanathan G, Subramanian A, Sudaryanto A et al (2012) Brominated flame retardants and polychlorinated biphenyls in human breast milk from several locations in India: potential contaminant sources in a municipal dumping site. Environ Int 39:87–95

    Article  CAS  Google Scholar 

  • Dhal B, Das NN, Pandey BD, Thatoi HN (2010) Environmental quality of the boula-nuasahi chromite mine area in India. Mine Water Environ 30:191–196

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:120–184

    Google Scholar 

  • Elangovan D, Chalakh ML (2006) Arsenic Pollution in West Bengal. Technical Digest, National Bank for Agriculture and Rural Development, Issue 9, pp 31–35. https://www.nabard.org/pdf/issue9td-8.pdf Accessed 12 Aug 2016

  • Farid ATM, Roy KC, Hossain KM, Sen R (2003) A study of arsenic contaminated irrigation water and it’s carried over effect on vegetable. Fate of arsenic in the environment. Bangladesh University of Engineering and Technology, Dhaka, pp 113–121

    Google Scholar 

  • Feng J, Wang Y, Zhao J et al (2011) Source attributions of heavy metals in rice plant along highway in eastern China. J Environ Sci 23:1158–1164

    Article  CAS  Google Scholar 

  • Garari TK, Das DK, Sarkar S (2000) Effect of iron and zinc application on the availability of native and applied arsenic simulating low land rice condition. Paper presented at the International Conference on managing natural resources for sustainable agricultural production in the 21st Century, held at the New Delhi 14–18 February 2000

    Google Scholar 

  • Ghose MK (2004) Effect of opencast mining on soil fertility. J Environ Indus Res 63:1006–1009

    Google Scholar 

  • Goswami S, Das M, Guru BC (2008) Environmental impact of Siljora opencast manganese mining, Keonjhar: an overview. Vistas Geol Res 7:121–131

    Google Scholar 

  • Goswami S, Mishra JS, Das M (2010a) Environmental impact of manganese mining: a case study of Dubna opencast mine, Keonjhar district, Orissa, India. J Ecophysiol Occup Health 9:189–197

    Google Scholar 

  • Goswami S, Das M, Guru BC (2010b) Environmental degradation due to exploitation of mineral resources: a scenario in Orissa. The Bioscan 2:295–304

    Google Scholar 

  • Govil PK, Reddy GL, Krishna AK (2001) Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environ Geol 41:461–469

    Article  CAS  Google Scholar 

  • Govil PK, Sorlie JE, Murthy NN et al (2008) Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environ Monit Assess 140:313–323

    Article  CAS  Google Scholar 

  • Gowd SS, Reddy MR, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the ganga plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    Article  CAS  Google Scholar 

  • Grossi G, Lichtig J, Krauβ P (1998) PCDD/F, PCB and PAH content of Brazilian compost. Chemosphere 37:2153–2160

    Article  CAS  Google Scholar 

  • Gupta DK, Chatterjee S, Datta S et al (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144

    Article  CAS  Google Scholar 

  • Halder D, Bhowmick S, Biswas A et al (2013) Risk of arsenic exposure from drinking water and dietary components: implications for risk Management in Rural Bengal. Environ Sci Technol 47:1120–1127

    Article  CAS  Google Scholar 

  • Halder D, Biswas A, Šlejkovec Z, Chatterjee D et al (2014) Arsenic species in raw and cooked rice: implications for human health in rural Bengal. Sci Total Environ 497-498:200–208

    Article  CAS  Google Scholar 

  • Huang RQ, Gao SF, Wang WL (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, Southeast China. Sci Total Environ 368:531–541

    Article  CAS  Google Scholar 

  • Jain N, Bhatia A et al (2005) Impact of post-Methanation distillery effluent irrigation on groundwater quality. Environ Monit Assess 110:243–255

    Article  CAS  Google Scholar 

  • Jena D, Nayak MK, Acharya N, Singh MV (2003). Fluoride Distribution in Soil, Water and Plant in the Vicinity of NALCO Smelter Plnat at Angul in Orissa. In: Environmental Pollution-Proceedings of the International Conference on Water and Environment (WE-2003) 15–18 December 2003, Bhopal, India, pp 188–194

    Google Scholar 

  • Jones KC, Johnston AE (1989) Cadmium in cereal grain and herbage from long-term experimental plots at Rothamsted, UK. Environ Pollut 57:199–216

    Article  CAS  Google Scholar 

  • Juwarkar A, Singh SK, Dubay K, Nimje M (2003) Reclamation of Iron Mine Spoil Waste Dumps Using Integrated Biotechnological Approach. In: Proceedings of national seminar on status of environmental management in mining industry, Varanasi, January 17–18, pp 197–212

    Google Scholar 

  • Kabata-Pendias A (2000) Trace element in soils and plants, Third edn. CRC Press, Baton Raton, p 432

    Google Scholar 

  • Kabata-Pendias A, Pendias K (1984) Trace elements in soils and plants. CRC press, Boca Raton, p 315

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Baton Raton, p 365

    Google Scholar 

  • Kanmani S, Gandhimathi R (2013) Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl Water Sci 3:193–205

    Article  CAS  Google Scholar 

  • Kaul PP, Srivastava R, Srivastava SP et al (2002) Relationships of maternal blood lead and disorders of pregnancy to neonatal birth weight. Vet Human toxicol J 44:321–323

    CAS  Google Scholar 

  • Krishna AK, Govil PK (2008) Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, southern India. Environ Geol 54:1465–1472

    Article  CAS  Google Scholar 

  • Kulshrestha S (2013) Report of the expert committee to frame a policy for monitoring of pesticide residues in Fruits & Vegetables. Ministry of Health & family Welfare, Nirman Bhawan

    Google Scholar 

  • Kumar A, Maiti SK (2015) Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa. India Environ Earth Sci. doi:10.1007/s12665-015-4282-1

    Google Scholar 

  • Larsson DJG, de-Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  • Lenka M, Panda KK, Panda BB (1992) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in-situ aquatic and terrestrial plants at Ganjam, India. Arch Environ Contam Toxicol 22:195–202

    Article  CAS  Google Scholar 

  • Maharia RS, Dutta RK, Acharya R, Reddy AVR (2010) Heavy metal bioaccumulation in selected medicinal plants collected from Khetri copper mines and comparison with those collected from fertile soil in Haridwar, India. J Environ Sci Health, Part B: Pesticides Food Contam Agr Wastes 45:174–181

    Article  CAS  Google Scholar 

  • Mahimairaja S, Sakthivel S, Divakaran J et al (2000) Extent and severity of contamination around tanning industries in Vellore district. In: Naidu R, Willett IR, Mahimairajah S, Kookana R, Ramasamy K (eds) Towards better management of soils contaminated with tannery wastes, ACIAR publication no 88. Australian Centre for International Agricultural Research, Canberra, pp 75–82

    Google Scholar 

  • Masto RE, Lal CR, Joshy G, Vetrivel AS et al (2011) Impacts of opencast coal mine and mine fire on the trace elements’ content of the surrounding soil Vis-à-Vis human health risk. Toxicol Environ Chem 93:223–237

    Article  CAS  Google Scholar 

  • McArthur JM, Banjeree DM, Hudson-Edwards KA et al (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press Inc, New York

    Google Scholar 

  • Ministry of Mines (2008) National mineral policy of India. Government of India

    Google Scholar 

  • Ministry of Mines (2010) National mineral policy of India. Government of India

    Google Scholar 

  • Mishra AK, Maiti SK, Pal AK (2013) Status of PM10 in bound heavy metals in ambient air in certain parts of Jharia coal field, Jharkhand, India. Int J Environ Sci 4:141–150

    Google Scholar 

  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK (2011) Chromium bioaccumulation in rice grown in contaminated soil and irrigated mine wastewater-a case study at south Kaliapani chromite mine area, Orissa, India. Int J Phytoremed 13:397–409

    Article  CAS  Google Scholar 

  • Mondal NC, Saxena VK et al (2005) Assessment of groundwater pollution due to tannery industries in and around Dindigul, Tamilnadu, India. Environ Geol 48:149–157

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1987) Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States of America. J Environ Qual 16:137–142

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43:55–61

    Article  Google Scholar 

  • Mukherjee A, Bhattacharya P (2001) Arsenic in groundwater in the Bengal Delta plain: slow poisoning in Bangladesh. Environ Rev 9:189–220

    Article  CAS  Google Scholar 

  • Mukherjee S, Nelliyat P (2007) Groundwater pollution and emerging environmental challenges of industrial effluent irrigation in Mettupalayam Taluk, Tamil Nadu. In: Comprehensive Assessment of Water Management in Agriculture Discussion Paper 4, International Water Management Institute, Colombo, Sri Lanka, p 51

    Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA et al (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163

    Google Scholar 

  • Norra S, Berner ZA, Agarwala P et al (2005) Impact of irrigation with arsenic rich groundwater on soil and crops: a geochemical case study in West Bengal delta plain, India. Appl Geochem 20:1890–1906

    Article  CAS  Google Scholar 

  • Pal R, Mahima A, Tripathi A (2014) Assessment of heavy metals in suspended particulate matter in Moradabad, India. J Environ Biol 35:357–361

    Google Scholar 

  • Pandey B, Agrawal M, Singh S (2016) Ecological risk assessment of soil contamination by trace elements around coal mining area. J Soils Sediments 16:159–168

    Article  CAS  Google Scholar 

  • Panwar NR, Saha JK, Adhikari T et al (2010) Soil and water pollution in India: some case studies, IISS Technical Bulletin. Indian Institute of Soil Science, Bhopal

    Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (2009) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Altern Agric 7:5–11. doi:10.1017/S0889189300004367

    Article  Google Scholar 

  • Parth V, Murthy NN, Saxena PR (2011) Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications. J Environ Res Manage 2:27–34

    Google Scholar 

  • Patel KS, Ambade B, Sharma S et al (2010a) Lead Environmental Pollution in Central India. In: Ramov B (ed) New Trends in Technologies, InTech, Available from: http://www.intechopen.com/books/new-trends-in-technologies/lead-environmental-pollution-in-central-India

  • Patel KP, Singh MV, George V, Ramani VP (2010b) Four decades of research on management of micro- and secondary- nutrients and pollutant elements in crops and soils of Gujarat. Indian Institute of Soil Science, Bhopal

    Google Scholar 

  • Prakash O, Suar M, Raina V et al (2004) Residues of hexachlorocyclohexane isomers in soil and water samples from Delhi and adjoining areas. Curr Sci India 87:73–77

    CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  Google Scholar 

  • Rangasamy S, Purushothaman G, Alagirisamy B, Mahimairaja S (2015) Chromium contamination in soil and groundwater due to tannery wastes disposals at Vellore district of Tamil Nadu. Int J Environ Sci 6:114–124

    CAS  Google Scholar 

  • Rao VVSG, Dhar RL, Subrahmanyam K (2001) Assessment of contaminant migration in groundwater from an industrial development area, Medak district, Andhra Pradesh, India. Water Air Soil Pollut 128:369–389

    Article  CAS  Google Scholar 

  • Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In: Chappel WR, Abernathy CO, Calderon R (eds) Arsenic exposure and health effects IV. Elsevier Science Ltd, Oxford, pp 53–78

    Google Scholar 

  • Rawat M, Ramanathan AL, Subramanian V (2009) Quantification and distribution of heavy metals from small scale industrial areas of Kanpur city, India. J Hazard Mater 172:1145–1149

    Article  CAS  Google Scholar 

  • Rothbaum HP, Goguel RL, Johnston AE, Mattingly GEG (1986) Cadmium accumulation in soils from long-continued applications of superphosphate. J Soil Sci 37:99–107

    Article  CAS  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H, Ando M (2002) Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chem Toxicol 40:1611–1621

    Article  CAS  Google Scholar 

  • Saha JK (2005) Changes in salinity and sodicity of soils with continuous application of contaminated water near industrial area. J Indian Soc Soil Sci 53:612–617

    CAS  Google Scholar 

  • Saha JK, Sharma AK (2006) Impact of the use of polluted irrigation water on soil quality and crop productivity near Ratlam and Nagda industrial area. Agricultural Bulletin IISS-1. Indian Institute of Soil Science, Bhopal, India

    Google Scholar 

  • Saha JK, Panwar N et al (2010a) An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag 30:192–201

    Article  CAS  Google Scholar 

  • Saha JK, Panwar N, Singh MV (2010b) Determination of lead and cadmium concentration limits in agricultural soil and municipal solid waste compost through an approach of zero tolerance to food contamination. Environ Monit Assess 168:397–406

    Article  CAS  Google Scholar 

  • Saha JK, Panwar N et al (2013a) Risk assessment of heavy metals in soil of a susceptible agro-ecological system amended with municipal solid waste compost. J Indian Soc Soil Sci 61:15–22

    CAS  Google Scholar 

  • Saha JK, Rao AS, Mandal B (2013b) Integrated management of polluted soils for enhancing productivity and quality of crops. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 1–21

    Google Scholar 

  • Samal AC, Kar S, Bhattacharya P, Santra SC (2011) Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 46(11):1259–1265

    Article  CAS  Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P et al (2013) Arsenic in food chain and community health risk: a study in Gangetic West Bengal. Proc Environ Sci 18:2–13

    Article  CAS  Google Scholar 

  • Sellamuthu KM, Mayilswami C et al (2011) Effect of textile and dye industrial pollution on irrigation water quality of Noyyal River basin of Tamil Nadu. Madras Agric J 98:129–135

    Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2008) Atmospheric deposition of heavy metal (copper, zinc, cadmium and lead) in Varanasi city, India. Environ Monit Assess 142:269–278

    Article  CAS  Google Scholar 

  • Sharma S, Goyal R, Sadana US (2014) Selenium accumulation and antioxidant status of rice plants grown on seleniferous soil from northwestern India. Rice Sci 21:327–334

    Article  Google Scholar 

  • Sharma S, Kaur J, Nagpal AK, Kaur I (2016) Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs. Environ Monit Assess. doi:10.1007/s10661-016-5507-9

    Google Scholar 

  • Shyamsundar PC, Das M, Maiti SK (2014) Phytostabilization of Mosaboni copper mine tailings: a green step towards waste management. Appl Ecol Environ Res 12:25–32

    Article  Google Scholar 

  • Singh SK, Ghosh AK (2011) Entry of arsenic into food material – a case study. World Appl Sci J 13:385–390

    CAS  Google Scholar 

  • Singh V, Brar MS, Sharma P, Brar BS (2011) Distribution of arsenic in groundwater and surface soils in south western districts of Punjab. J Indian Soc Soil Sci 59:376–380

    Google Scholar 

  • Sinha S, Gupta AK, Bhatt K et al (2006) Distribution of metal in the edible plant grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ Monit Assess 115:1–22

    Article  CAS  Google Scholar 

  • Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477

    Article  CAS  Google Scholar 

  • Smilde KW, Van Luit B (1983) The effect of phosphate fertilizer on cadmium in soils and crops. Rapport 6–8, Inst. voor Bodemvruchtbaarheid, Oosterweg, pp 1–17

    Google Scholar 

  • Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ Health 14:177–183

    CAS  Google Scholar 

  • Somasundaram MV, Ravindran G et al (1993) Ground-water pollution of the madras urban aquifer, India. Ground Water 31:4–11

    Article  CAS  Google Scholar 

  • Someya M, Ohtake M, Kunisue T et al (2010) Persistent organic pollutants in breast milk of mothers residing around an open dumping site in Kolkata, India: specific dioxin-like PCB levels and fish as a potential source. Environ Int 36:27–35

    Article  CAS  Google Scholar 

  • Stalin P, Singh MV, Muthumanickam D et al (2010) Four decades of research on micro and secondary nutrients and pollutant elements in crops and soils of Tamil Nadu. Research Publication No. 8. AICRP Micro- and Secondary- Nutrients and Pollutant Elements in Soils and Plants, IISS, Bhopal

    Google Scholar 

  • Stracher GB, Taylor TP (2004) Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol 59:7–17

    Article  CAS  Google Scholar 

  • Subramanian A, Tanabe S (2007) Persistent Toxic Substances in India. In: Li A, Tanabe S, Jiang G et al (eds) Developments in environmental science, vol 7. Elsevier Ltd. doi:10.1016/S1474–8177(07)07009-X

  • Subramanian A, Kunisue T, Tanabe S (2015) Recent status of organohalogens, heavy metals and PAHs pollution in specific locations in India. Chemosphere 137:122–134

    Article  CAS  Google Scholar 

  • Swain BK, Goswami S, Das M (2011) Impact of mining on soil quality: a case study from Hingula open coal mine, Angul district, Orissa. Vistas Geol Res 10:77–81

    Google Scholar 

  • Tiwari K, Pandey A, Pandey J (2008) Atmospheric deposition of heavy metals in a seasonally dry tropical urban environment (India). J Environ Res Develop 2:605–611

    CAS  Google Scholar 

  • Tiwary RK, Dhakate R, Rao VA, Singh VS (2005) Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ Geol 48:420–429

    Article  CAS  Google Scholar 

  • Tripathi A, Misra DR (2012) A study of physico-chemical properties and heavy metals in contaminated soils of municipal waste dumpsites at Allahabad, India. Int J Environ Sci 2:2024–2033

    CAS  Google Scholar 

  • Tripathi RM, Ashawa SC, Khandekar RN (1993) Atmospheric depositions of Cd, Pb, Cu and Zn in Bombay, India. Atmos Environ 27:269–273

    Article  Google Scholar 

  • UNEP (2002) Environmental data report. United Nations Environmental Programme, Nairobi

    Google Scholar 

  • USEPA (1999) Background report on fertilizer use, contamination and regulations, EPA-747-R-98-003. Office of Pollution Prevention and Toxics, Washington, DC

    Google Scholar 

  • WHO (1988) Toxicological evaluation of certain food additives and contaminants: Arsenic. The 33rd meeting of the Joint FAO/WHO Expert Committee on Food Additives, 26, 155–162, Geneva

    Google Scholar 

  • Yellishetty M, Ranjith PG, Kumar DL (2009) Metal concentrations and metal mobility in unsaturated mine wastes in mining areas of Goa, India. Resour Conserv Recycl 53:379–385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Saha, J.K., Selladurai, R., Coumar, M.V., Dotaniya, M.L., Kundu, S., Patra, A.K. (2017). Status of Soil Pollution in India. In: Soil Pollution - An Emerging Threat to Agriculture. Environmental Chemistry for a Sustainable World, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-4274-4_11

Download citation

Publish with us

Policies and ethics