Multi-objective Optimization for Differential-Based PSD Based on Surrogate Model

Chapter

Abstract

In chapter 8, engineering analysis has been carried out by finite element model of DPSD.

References

  1. 1.
    Yao MY. Gear optimization of power split device for hybrid electric vehicle. Changchun: Jilin University; 2014.Google Scholar
  2. 2.
    Shen WH. Surrogate model based optimization design method research for gear transmission components of HEV. Changchun: Jilin University; 2014.Google Scholar
  3. 3.
    Jafari S, Hojjati MH, Fathi A. Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density. Int J Press Vessels Pip. 2012;92:41–7.CrossRefGoogle Scholar
  4. 4.
    Hare W, Nutini J, Tesfamariam S. A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw. 2013;59:19–28.CrossRefGoogle Scholar
  5. 5.
    Montazeri-Gh M, Poursamad A, Ghlichi B. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicle. J Franklin Inst. 2006;343(4):420–35.CrossRefMATHGoogle Scholar
  6. 6.
    Navalertporn T, Afzulpurkar NV. Optimization of tile manufacturing process using particle swarm optimization. Swarm Evol Comput. 2011;1(2):97–109.CrossRefGoogle Scholar
  7. 7.
    Wang GG, Shan S. Review of metamodelling techniques in support of engineering design optimization. J Mech Des. 2007;129(4):370–80.CrossRefGoogle Scholar
  8. 8.
    Park HS, Dang XP. Structural optimization based on CAD-CAE integration and metamodeling techniques. Comput Aided Des. 2010;42(10):889–902.CrossRefGoogle Scholar
  9. 9.
    Montgomery DC, Montgomery DC. Design and analysis of experiments [M]. New York: Wiley; 1997.MATHGoogle Scholar
  10. 10.
    Bement TR. Taguchi techniques for quality engineering. Technometrics. 1989;31(2):253–5.CrossRefGoogle Scholar
  11. 11.
    Ursache NM, Bressloff NW, Keane AJ. Aircraft roll enhancement via mutli-objective optimization using surrogate modeling. AIAA J. 2011;49(7):1525–41.CrossRefGoogle Scholar
  12. 12.
    Li M, Li G, Azarm S. A Kriging metamodel assisted multi-objective genetic algorithm for design optimization. J Mech Des. 2008;130(3):030401.CrossRefGoogle Scholar
  13. 13.
    Chen Y, Zou X, Xie W. How can surrogates influence the convergence of evolutionary algorithm. Swarm Evol Comput. 2013;12:18–23.CrossRefGoogle Scholar
  14. 14.
    Forrester AIJ, Keane AJ. Recent advances in surrogate-based optimization. Prog Aerosp Sci. 2009;45(1):50–79.CrossRefGoogle Scholar
  15. 15.
    Krisch U, Papalambros PY. Structural reanalysis for topological modifications–a unified approach. Structural and multidisciplinary Optimization. 2001;21(5):333–44.CrossRefGoogle Scholar
  16. 16.
    Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. New York: Wiley; 1995.Google Scholar
  17. 17.
    Broomhead DS, Loewe D. Multivariable function interpolation and adaptive networks. Complex Syst. 1988;2:321–55.MATHGoogle Scholar
  18. 18.
    Forrester A, Sobester A, Keane A. Engineering design via surrogate modeling: a practical guide. Chichester: Wiley; 2008.CrossRefGoogle Scholar
  19. 19.
    Makadia AJ, Nanavati JI. Optimization of machining parameters for turning operations based on response surface methodology. Measurement. 2013;46(4):1521–9.CrossRefGoogle Scholar
  20. 20.
    Dai HZ, Zhao W, Wang W, Gao ZG. An improved radial basis function network for structure reliability analysis. J Mech Sci Technol. 2011;25(9):2151–9.CrossRefGoogle Scholar
  21. 21.
    Jin R. Chen.W. Simpson T W. Comparative studies of metamodelling techniques under multiple modeling criteria. Struct Multidiscip Optim. 2001;23(1):1–13.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lophaven SN, Nielsen HB, Soudergaard J. Aspects of the matlab toolbox DACE. Report IMM-REP2002-12, Informatics and Mathematical Modeling [DB/OL]. Denmark: Technical University of Denmark; 2002.Google Scholar
  23. 23.
    Sakata S, Ashida F, Tanaka H. Stabilization of parameter estimation for Kriging-based approximate with empirical semivariogram. Comput Methods Appl Mech Eng. 2010;199(25):1710–21.CrossRefMATHGoogle Scholar
  24. 24.
    Liu CL. Dynamic analysis and braking performance optimization of drum brake. Changchun: Jilin University; 2011.Google Scholar
  25. 25.
    Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994.Google Scholar
  26. 26.
    Li HY, Ma MX, Jing YW. A new method based on LPP and NSGA-II for multiobjective robust collaborative optimization. J Mech Sci Technol. 2011;25(5):1071–9.CrossRefGoogle Scholar
  27. 27.
    Wang JH, Yin ZY. Multi-objective optimization algorithm based on the combination of NSGA-II and MOPSO. J Comput Appl. 2007;27(11): 2817–21.Google Scholar
  28. 28.
    Savani V, Rao RV, Vakharia DP. Optimal weight design of a gear train using particle swarm optimization and simulation and simulated annealing algorithms. Mech Mach Theory. 2010;45(3):531–41.CrossRefMATHGoogle Scholar
  29. 29.
    Reyes-Sierra M, Coello CAC. Multi-objective particle swarm optimizers: a survey of the sate-of-the-art. Int J Comput Intell Res. 2006;2(3):287–308.MathSciNetGoogle Scholar
  30. 30.
    Li F, Qin YM, Pang Z, et al. Design and optimization of PSD housing using a MIGA-NLPQL hybrid strategy based on a surrogate model. Strojniski vestink-J Mech Eng. 2014;60(7–8):525–35.CrossRefGoogle Scholar
  31. 31.
    Wang JX, Shen WH, Wang Z, et al. Multi-objective optimization of drive gears for power split device using surrogate models. J Mech Sci Technol. 2014;28(6):2205–14.CrossRefGoogle Scholar
  32. 32.
    Chen B. Modeling, programming and solving strategies in multidisciplinary optimization design. Wuhan: Huazhong University of Science and Technology; 2000.Google Scholar

Copyright information

© Beijing Institute of Technology Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Jilin UniversityChangchunChina

Personalised recommendations