Skip to main content

Abstract

In this chapter, we provide a literature review of intelligent microgrid management and electric vehicle charging control with different decision objectives in different scenarios. We first give an overview of the energy management mechanisms in microgrids. We then review existing works concerning electric vehicle charging strategies. The limitations of previous literature and the advantages of our method over theirs are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As an example, consider two-stage linear programs. Here the decision maker takes some action in the first stage, after which a random event occurs affecting the outcome of the first-stage decision. A recourse decision can then be made in the second stage that compensates for any bad effects that might have been experienced as a result of the first-stage decision. The optimal policy from such a model is a single first-stage policy and a collection of recourse decisions (a decision rule) defining which second-stage action should be taken in response to each random outcome.

References

  1. L.P. Qian, Y.J.A. Zhang, J. Huang, Y. Wu, Demand response management via real-time electricity price control in smart grids. IEEE J. Sel. Areas Commun. 31(7), 1268–1280 (2013)

    Article  Google Scholar 

  2. M. Fathi, H. Bevrani, Adaptive energy consumption scheduling for connected microgrids under demand uncertainty. IEEE Trans. Power Deliv. 28(3), 1576–1583 (2013)

    Article  Google Scholar 

  3. A.-H. Mohsenian-Rad, A. Leon-Garcia, Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 1(2), 120–133 (2010)

    Article  Google Scholar 

  4. A.J. Conejo, J.M. Morales, L. Baringo, Real-time demand response model. IEEE Trans. Smart Grid 1(3), 236–242 (2010)

    Article  Google Scholar 

  5. K. Wang, F. Ciucu, C. Lin, S.H. Low, A stochastic power network calculus for integrating renewable energy sources into the power grid. IEEE J. Sel. Areas Commun. 30(6), 1037–1048 (2012)

    Article  Google Scholar 

  6. S. Mohammadi, S. Soleymani, B. Mozafari, Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices. Int. J. Electr. Power Energy Syst. 54, 525–535 (2014)

    Article  Google Scholar 

  7. S. Bu, F.R. Yu, P.X. Liu, Stochastic unit commitment in smart grid communications, in 2011 IEEE Conference on Computer Communications Workshops IEEE (2011), pp. 307–312

    Google Scholar 

  8. S. Bu, F.R. Yu, P.X. Liu, P. Zhang, Distributed scheduling in smart grid communications with dynamic power demands and intermittent renewable energy resources, in 2011 IEEE International Conference on Communications Workshops IEEE (2011), pp. 1–5

    Google Scholar 

  9. T. Soubdhan, R. Emilion, R. Calif, Classification of daily solar radiation distributions using a mixture of dirichlet distributions. Sol. Energy 83(7), 1056–1063 (2009)

    Article  Google Scholar 

  10. Y. Zhang, N. Gatsis, G.B. Giannakis, Robust energy management for microgrids with high-penetration renewables. IEEE Trans. Sustain. Energy 4(4), 944–953 (2013)

    Article  Google Scholar 

  11. R. Jabr, Robust transmission network expansion planning with uncertain renewable generation and loads. IEEE Trans. Power Syst. 28(4), 4558–4567 (2013)

    Article  Google Scholar 

  12. S.-J. Kim, G.B. Giannakis, Scalable and robust demand response with mixed-integer constraints. IEEE Trans. Smart Grid 4(4), 2089–2099 (2013)

    Article  Google Scholar 

  13. S.A. Kazarlis, A. Bakirtzis, V. Petridis, A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11(1), 83–92 (1996)

    Article  Google Scholar 

  14. Z.-L. Gaing, Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)

    Article  Google Scholar 

  15. R. Johnson, H. Happ, W. Wright, Large scale hydro-thermal unit commitment-method and results. IEEE Trans. Power Appar. Syst. 3, 1373–1384 (1971)

    Article  Google Scholar 

  16. C. Pang, G.B. Sheblé, F. Albuyeh, Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Trans. Power Appar. Syst. 3, 1212–1218 (1981)

    Article  Google Scholar 

  17. F. Zhuang, F.D. Galiana, Towards a more rigorous and practical unit commitment by lagrangian relaxation. IEEE Trans. Power Syst. 3(2), 763–773 (1988)

    Article  Google Scholar 

  18. T.S. Dillon, K.W. Edwin, H.-D. Kochs, R. Taud, Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Trans. Power Appar. Syst. 6, 2154–2166 (1978)

    Article  Google Scholar 

  19. M. Carrión, J.M. Arroyo, A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21(3), 1371–1378 (2006)

    Article  Google Scholar 

  20. N.P. Padhy, Unit commitment-a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004)

    Article  Google Scholar 

  21. B.H. Chowdhury, S. Rahman, A review of recent advances in economic dispatch. IEEE Trans. Power Syst. 5(4), 1248–1259 (1990)

    Article  MathSciNet  Google Scholar 

  22. J. Xu, S. Tan, S.K. Panda, Optimization of economic load dispatch for a microgrid using evolutionary computation, in IEEE Annual Conference of Industrial Electronics Society IEEE (2011), pp. 3192–3197

    Google Scholar 

  23. A. Chaouachi, R. Kamel, R. Andoulsi, K. Nagasaka, Multiobjective intelligent energy management for a microgrid. IEEE Trans. Ind. Inform. 60(4), 1688–1699 (2013)

    Article  Google Scholar 

  24. M. Motevasel, A.R. Seifi, T. Niknam, Multi-objective energy management of CHP (combined heat and power)-based micro-grid. Energy 51, 123–136 (2013)

    Article  Google Scholar 

  25. X. Wu, X. Wang, Z. Bie, Optimal generation scheduling of a microgrid, in International Conference and Exhibition on Innovative Smart Grid Technologies IEEE (2012), pp. 1–7

    Google Scholar 

  26. A. Parisio, L. Glielmo, A mixed integer linear formulation for microgrid economic scheduling, in IEEE International Conference on Smart Grid Communications IEEE (2011), pp. 505–510

    Google Scholar 

  27. U.A. Ozturk, M. Mazumdar, B.A. Norman, A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 19(3), 1589–1598 (2004)

    Article  Google Scholar 

  28. L. Wu, M. Shahidehpour, T. Li, Stochastic security-constrained unit commitment. IEEE Trans. Power Syst. 22(2), 800–811 (2007)

    Article  Google Scholar 

  29. A. Tuohy, P. Meibom, E. Denny, M. O’Malley, Unit commitment for systems with significant wind penetration. IEEE Trans. Power Syst. 24(2), 592–601 (2009)

    Article  Google Scholar 

  30. P.A. Ruiz, C.R. Philbrick, E. Zak, K.W. Cheung, P.W. Sauer, Uncertainty management in the unit commitment problem. IEEE Trans. Power Syst. 24(2), 642–651 (2009)

    Article  Google Scholar 

  31. M. Mazidi, A. Zakariazadeh, S. Jadid, P. Siano, Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers. Manag. 86, 1118–1127 (2014)

    Article  Google Scholar 

  32. D. Bertsimas, E. Litvinov, X.A. Sun, J. Zhao, T. Zheng, Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)

    Article  Google Scholar 

  33. R. Jiang, J. Wang, Y. Guan, Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012)

    Article  Google Scholar 

  34. R. Gupta, N.K. Gupta, A robust optimization based approach for microgrid operation in deregulated environment. Energy Convers. Manag. 93, 121–131 (2015)

    Article  Google Scholar 

  35. E. Kuznetsova, C. Ruiz, Y.-F. Li, E. Zio, Analysis of robust optimization for decentralized microgrid energy management under uncertainty. Int. J. Electr. Power Energy Syst. 64, 815–832 (2015)

    Article  Google Scholar 

  36. D. Bertsimas, M. Sim, Robust discrete optimization and network flows. Math. Progr. 98(1), 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Bertsimas, M. Sim, The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Esmaili, A. Goldoust, Multi-objective optimal charging of plug-in electric vehicles in unbalanced distribution networks. Int. J. Electr. Power Energy Syst. 73, 644–652 (2015)

    Article  Google Scholar 

  39. A. Zakariazadeh, S. Jadid, P. Siano, Multi-objective scheduling of electric vehicles in smart distribution system. Energy Convers. Manag. 79, 43–53 (2014)

    Article  Google Scholar 

  40. M. Honarmand, A. Zakariazadeh, S. Jadid, Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition. Energy 65, 572–579 (2014)

    Article  MATH  Google Scholar 

  41. J. Yang, L. He, S. Fu, An improved pso-based charging strategy of electric vehicles in electrical distribution grid. Appl. Energy 128, 82–92 (2014)

    Article  Google Scholar 

  42. D.M. Anand, R.T. de Salis, Y. Cheng, J. Moyne, D.M. Tilbury, A hierarchical incentive arbitration scheme for coordinated pev charging stations. IEEE Trans. Smart Grid 6(4), 1775–1784 (2015)

    Article  Google Scholar 

  43. B. Škugor, J. Deur, Dynamic programming-based optimisation of charging an electric vehicle fleet system represented by an aggregate battery model. Energy 92, 456–465 (2015)

    Article  Google Scholar 

  44. W. Qi, Z. Xu, Z.-J.M. Shen, Z. Hu, Y. Song, Hierarchical coordinated control of plug-in electric vehicles charging in multifamily dwellings. IEEE Trans. Smart Grid 5(3), 1465–1474 (2014)

    Article  Google Scholar 

  45. M. Shaaban, A. Eajal, E. El-Saadany, Coordinated charging of plug-in hybrid electric vehicles in smart hybrid ac/dc distribution systems. Renew. Energy 82, 92–99 (2015)

    Article  Google Scholar 

  46. J. de Hoog, T. Alpcan, M. Brazil, D.A. Thomas, I. Mareels, Optimal charging of electric vehicles taking distribution network constraints into account. IEEE Trans. Power Syst. 30(1), 365–375 (2015)

    Article  Google Scholar 

  47. Y. He, B. Venkatesh, L. Guan, Optimal scheduling for charging and discharging of electric vehicles. IEEE Trans. Smart Grid 3(3), 1095–1105 (2012)

    Article  Google Scholar 

  48. W. Tang, S. Bi, Y.J. Zhang, Online coordinated charging decision algorithm for electric vehicles without future information. IEEE Trans. Smart Grid 5(6), 2810–2824 (2014)

    Article  Google Scholar 

  49. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, Online multicriteria framework for charging management of phevs. IEEE Trans. Veh. Technol. 63(7), 3028–3037 (2014)

    Article  Google Scholar 

  50. L. Hua, J. Wang, C. Zhou, Adaptive electric vehicle charging coordination on distribution network. IEEE Trans. Smart Grid 5(6), 2666–2675 (2014)

    Article  Google Scholar 

  51. C. Jin, J. Tang, P. Ghosh, Optimizing electric vehicle charging: a customer’s perspective. IEEE Trans. Veh. Technol. 62(7), 2919–2927 (2013)

    Article  Google Scholar 

  52. L. Yang, J. Zhang, H.V. Poor, Risk-aware day-ahead scheduling and real-time dispatch for electric vehicle charging. IEEE Trans. Smart Grid 5(2), 693–702 (2014)

    Article  Google Scholar 

  53. L. Gan, U. Topcu, S. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940–951 (2013)

    Article  Google Scholar 

  54. Z. Ma, D.S. Callaway, I.A. Hiskens, Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21(1), 67–78 (2013)

    Article  Google Scholar 

  55. R. Yu, J. Ding, W. Zhong, Y. Liu, S. Xie, Phev charging and discharging cooperation in v2g networks: a coalition game approach. IEEE Internet Things J. 1(6), 578–589 (2014)

    Article  Google Scholar 

  56. W. Lee, L. Xiang, R. Schober, V.W. Wong, Electric vehicle charging stations with renewable power generators: a game theoretical analysis. IEEE Trans. Smart Grid 6(2), 608–617 (2015)

    Article  Google Scholar 

  57. W. Tushar, W. Saad, H.V. Poor, D.B. Smith, Economics of electric vehicle charging: a game theoretic approach. IEEE Trans. Smart Grid 3(4), 1767–1778 (2012)

    Article  Google Scholar 

  58. E.L. Karfopoulos, N.D. Hatziargyriou, A multi-agent system for controlled charging of a large population of electric vehicles. IEEE Trans. Power Syst. 28(2), 1196–1204 (2013)

    Article  Google Scholar 

  59. A. Sheikhi, S. Bahrami, A. Ranjbar, H. Oraee, Strategic charging method for plugged in hybrid electric vehicles in smart grids; a game theoretic approach. Int. J. Electr. Power Energy Syst. 53, 499–506 (2013)

    Article  Google Scholar 

  60. S. Bahrami, M. Parniani, Game theoretic based charging strategy for plug-in hybrid electric vehicles. IEEE Trans. Smart Grid 5(5), 2368–2375 (2014)

    Article  Google Scholar 

  61. N. Chen, C.W. Tan, T.Q. Quek, Electric vehicle charging in smart grid: optimality and valley-filling algorithms. IEEE J. Sel. Top. Signal Process. 8(6), 1073–1083 (2014)

    Article  Google Scholar 

  62. K. Zhan, Z. Hu, Y. Song, N. Lu, Z. Xu, L. Jia, A probability transition matrix based decentralized electric vehicle charging method for load valley filling. Electr. Power Syst. Res. 125, 1–7 (2015)

    Article  Google Scholar 

  63. L. Zhang, F. Jabbari, T. Brown, S. Samuelsen, Coordinating plug-in electric vehicle charging with electric grid: Valley filling and target load following. J. Power Sour. 267, 584–597 (2014)

    Article  Google Scholar 

  64. C.-K. Wen, J.-C. Chen, J.-H. Teng, P. Ting, Decentralized plug-in electric vehicle charging selection algorithm in power systems. IEEE Trans. Smart Grid 3(4), 1779–1789 (2012)

    Article  Google Scholar 

  65. X. Xi, R. Sioshansi, Using price-based signals to control plug-in electric vehicle fleet charging. IEEE Trans. Smart Grid 5(3), 1451–1464 (2014)

    Article  Google Scholar 

  66. M.F. Shaaban, M. Ismail, E.F. El-Saadany, W. Zhuang, Real-time pev charging/discharging coordination in smart distribution systems. IEEE Trans. Smart Grid 5(4), 1797–1807 (2014)

    Article  Google Scholar 

  67. Y. Mou, H. Xing, Z. Lin, M. Fu, Decentralized optimal demand-side management for phev charging in a smart grid. IEEE Trans. Smart Grid 6(2), 726–736 (2015)

    Article  Google Scholar 

  68. S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, G. Deconinck, A scalable three-step approach for demand side management of plug-in hybrid vehicles. IEEE Trans. Smart Grid 4(2), 720–728 (2013)

    Article  Google Scholar 

  69. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, Online multi-criteria framework for charging management of phevs. IEEE Trans. Veh. Technol. 63(7), 3028–3037 (2014). future issue

    Article  Google Scholar 

  70. M. Zhang, J. Chen, The energy management and optimized operation of electric vehicles based on microgrid. IEEE Trans. Power Deliv. 29(3), 1427–1435 (2014)

    Article  Google Scholar 

  71. S. Gao, K. Chau, C. Liu, D. Wu, C. Chan, Integrated energy management of plug-in electric vehicles in power grid with renewables. IEEE Trans. Veh. Technol. 63(7), 3019–3027 (2014)

    Article  Google Scholar 

  72. M. Pantoš, Stochastic optimal charging of electric-drive vehicles with renewable energy. Energy 36(11), 6567–6576 (2011)

    Article  Google Scholar 

  73. L. Zhu, F.R. Yu, B. Ning, Optimal charging control for electric vehicles in smart microgrids with renewable energy sources, in IEEE Vehicular Technology Conference IEEE (2012), pp. 1–5

    Google Scholar 

  74. T. Zhang, W. Chen, Z. Han, Z. Cao, Charging scheduling of electric vehicles with local renewable energy under uncertain electric vehicle arrival and grid power price. IEEE Trans. Veh. Technol. 63(6), 2600–2612 (2014). future issue

    Article  Google Scholar 

  75. C. Jin, X. Sheng, P. Ghosh, Energy efficient algorithms for electric vehicle charging with intermittent renewable energy sources, in IEEE Power and Energy Society General Meeting, IEEE (2013), pp. 1–5

    Google Scholar 

  76. C. Jin, X. Sheng, P. Ghosh, Optimized electric vehicle charging with intermittent renewable energy sources. IEEE J. Sel. Top. Signal Process. 8(6), 1063–1072 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R., Wang, P., Xiao, G. (2018). Literature Review. In: Intelligent Microgrid Management and EV Control Under Uncertainties in Smart Grid. Springer, Singapore. https://doi.org/10.1007/978-981-10-4250-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4250-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4249-2

  • Online ISBN: 978-981-10-4250-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics