Skip to main content

Dielectric Barrier Discharge (DBD) Plasmas and Their Applications

  • Chapter
  • First Online:
Plasma Science and Technology for Emerging Economies

Abstract

Gas discharge plasmas, also known as low-temperature plasmas, have drawn much attention in past few decades because of their importance in many technological developments. In this chapter, recent development in producing cost effective plasmas at atmospheric pressure has been introduced along with a brief description of low pressure gas discharge. An overview of  corona discharge, arc discharge, dielectric barrier discharge (DBD), surface discharge (SD), atmospheric pressure glow discharge (APGD) and atmospheric pressure plasmas jet has been presented. In particular, generation of atmospheric pressure DBD of different configuration, their characterization by optical and electrical methods and application of these DBD systems for surface treatment of different polymers have been reviewed. The chapter also includes atmospheric pressure plasma jet in argon and its application in biomedicine.  

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Kogelschatz, B. Eliasson, W. Egli, From ozone generators to at television screens: history and future potential of dielectric-barrier discharges. Pure Appl. Chem. 71(10), 1828 (1999)

    Article  Google Scholar 

  2. J. Janca, P. Stahel, J. Buchta et al., A plasma surface treatment of polyester textile fabrics used for reinforcement of car tires. Plasmas Polym. 6(1/2), (2001)

    Google Scholar 

  3. P. Stahel, J. Janca, D.P. Subedi, Surfaceactivation of non-fabricated polymeric textile by means of low temperature plasmas at atmosphericpressure. Czechoslovak J. Phys. 52 (2002)

    Google Scholar 

  4. D.P. Subedi, L. Zajickova, V. Bursikova et al., Surface modification of polycarbonate (bisphenol A) by low pressurerf plasma. Him. J. Sci. 1(2), 115–118 (2003)

    Google Scholar 

  5. S. Starostin, E. Aldea, H. de Vries et al., Application of atmospheric pressure glow discharge (APGD) for deposition of thin silica-like films on polymeric webs, in 28th ICPIG, Prague, Czech Republic, 2007

    Google Scholar 

  6. Y. Yin, L. Dongping, L. Dongming et al., Surface properties of silicon oxide films deposited using low-pressure dielectric barrier discharge. Appl. Surf. Sci. 18628, 1–5 (2009). doi:10.1016/j.apsusc.2009.04.142

    Google Scholar 

  7. V. Bursikova, L. Zajickova, P. Dvorak et al., Plasma enhanced chemical vapor deposition of silicon incorporated diamond like carbon films, in Proceeding XVth Europhysics Conference on Atomic and Molecular Physics of Ionized Gases, Miscolc-lillafured, Hungary 2000, pp. 408–409

    Google Scholar 

  8. L. Zajickova, V. Bursikova, V. Perina et al., Plasma modifications of polycarbonates. Surf. Coat. Technol. 142–144, 449–454 (2001)

    Article  Google Scholar 

  9. L. Zajickova, D.P. Subedi, V. Bursikova et al., Study of argon plasma treatment of polycarbonate substrate and its effect on film deposition. Acta Phys. Slovacca. 53(6), 489–504 (2003)

    Google Scholar 

  10. G. Fridman, G. Friedman, A. Gutsol et al., Applied plasma medicine. Plasma Process. Polym. 5 (2008)

    Google Scholar 

  11. M.S. Bell, B.K.T. Kenneth, G.L. Rodrigo et al., Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl. Chem. 78(6), 1117–1125 (2006)

    Article  Google Scholar 

  12. P. Rajasekaran, P. Mertmann, N. Bibinov et al., DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology. J. Phys. D Appl. Phys. 42 (2009). doi:10.1088/0022-3727/42/22/225201

  13. G. Borcia, C.A. Anderson, N.M.D. Brown, Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form. Plasma Sources Sci. Technol. 12, 335–344 (2003)

    Article  ADS  Google Scholar 

  14. K. Okazaki, T. Nozaki, Ultrashort pulsed barrier discharges and Applications. Pure Appl. Chem. 74(3), 447–452 (2002)

    Article  Google Scholar 

  15. A.P. Napartovich, Overview of atmospheric pressure discharges producing non-thermal plasma. Plasmas Polym. 6(1–2), (2001)

    Google Scholar 

  16. V.I. Gibalov, G.J. Pietsch, Dynamics of dielectric barrier discharges in different arrangements. Plasma Sources Sci. Technol. 21 (2012)

    Google Scholar 

  17. A. Schutze, J.Y. Jeong, S.E. Babayan et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 26(6), (1998)

    Google Scholar 

  18. B. Graham, Technological plasmas. Phys. World. 31–36 (2001)

    Google Scholar 

  19. E. Stoffels, W. Stoffels, Electrons, Ions and Dust in a Radio Frequency Discharge, (Edindhoven, 1994)

    Google Scholar 

  20. M. Konuma, Film Deposition by Plasma Techniques, (Stuttgart, 1991)

    Google Scholar 

  21. A.M. Howatson, An Introduction to Gas Discharges (Pergamon Press, Frankfurt, 1976)

    Google Scholar 

  22. L. Zajickova Thin films prepared by radio frequency PECVD. PhD thesis, Department of Physical Electronics, Masaryk University, Brno, Czech Republic, 1999

    Google Scholar 

  23. J.L. Cecchi, Introduction to Plasma Concepts and Discharge Configurations, (Noyes Publications, New Jersey, 1990), pp. 14–69

    Google Scholar 

  24. S.Y. Moon, J. Han, W. Choeb, Control of radio-frequency atmosphericpressure argon plasma characteristics by helium gas mixing. Phys. Plasmas. 13 (2006)

    Google Scholar 

  25. Y.A. Lebedev, Microwave discharges: generation and diagnostics. J. Phys. Conf. Ser. 257 (2010). doi:10.1088/1742-6596/257/1/012016

  26. H. Conrads, M. Schmidt, Plasma generation and plasma sources. Plasma Sources Sci. Technol. 9, 441–454 (2000)

    Article  ADS  Google Scholar 

  27. A.R. Hoskinson, J. Hopwood, A two-dimensional array of microplasmas generated using microwave resonators. Plasma Sources Sci. Technol. 21 (2012)

    Google Scholar 

  28. K. Tanaka, M. Kogoma, Application of spray-type atmospheric pressure glow plasma reactor: ashing of organic compounds. Plasmas Polym. 6(1–2), (2001)

    Google Scholar 

  29. L. Peng, Z. Ru-juan, W. Xiac-hui et al., An experimental study on atmosphericpressure glow discharge in different gases. Plasma Sci. Technol. 4(3), (2002)

    Google Scholar 

  30. G. Chen, S. Chen, M. Zhou et al., The preliminary discharging characterization of a novel APGD plume and its application in organic contaminant degradation. Plasma Sources Sci. Technol. 15, 603–608 (2006). doi:10.1088/0963-0252/15/4/002

    Article  ADS  Google Scholar 

  31. Z. Buntat, I.R. Smith, N.A.M. Razali, Ozone generation using atmospheric pressure glow discharge in air. J. Phys. D: Appl. Phys. 42 (2009)

    Google Scholar 

  32. L. Mangolini, C. Anderson, J. Heberlein et al., Effects of current limitation through the dielectric in atmospheric pressure glows in helium. J. Phys. D Appl. Phys. 37, 1021–1030 (2003)

    Article  ADS  Google Scholar 

  33. M. Goldman, A. Goldman, R.S. Sigmond, The corona discharge, its properties and specific uses. Pure Appi. Chem. 57(9), 1353–1362 (1985)

    Article  Google Scholar 

  34. Y.S. Akishev, G.I. Aponin, V.B. Karal’nik, Phenomenology of a high-current negative point-to-plane corona in nitrogen. Plasma Phys. Rep. 30(9), 779–787 (2004)

    Article  ADS  Google Scholar 

  35. L. Cernakova, D. Kovacik, A. Zahoranova et al., Surface modification of polypropylenenon-wovenfabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting. Plasma Chem. Plasma Process. 25(4), (2005)

    Google Scholar 

  36. B. Dong, J.M. Bauchire, J.M. Pouvesle et al., Experimental study of a DBD surface discharge for the active control of subsonic airflow. J. Phys. D Appl. Phys. 41 (2008)

    Google Scholar 

  37. U. Kogelschatz, Collective phenomena in volume and surface barrier discharges. J. Phys.: Conf. Ser. 257 (2010) 012015, in 25th Summer School and International Symposium on the Physics of Ionized Gases—SPIG 2010, IOP Publishing, 2010

    Google Scholar 

  38. M. Laroussi, X. Lu, V. Kolobov et al., Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure. J. Appl. Phys. 96(51), (2004)

    Google Scholar 

  39. N. Balcon, A. Aanesland, R. Boswell, Pulsed rf Discharge, Glow and Filamentary Mode At atmospheric Pressure in Argon, vol. 16, (IOP Publishing Ltd., 2006)

    Google Scholar 

  40. https://www.plasma-universe.com/Electric_glow_discharge (14 Sept 2016)

  41. Y. Ando, X. Zhao, Synthesis of carbon nanotubes by arc discharge method. New Diam. Front. Carbon Technol. 16(3), (2006)

    Google Scholar 

  42. C. Fanara, L. Vilarinho, Electrical characterization of atmospheric pressure arc plasmas. Eur. Phys. J. D 28, 241–251 (2004)

    Article  ADS  Google Scholar 

  43. A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  44. A. Chirokov, A. Gutsol, A. Fridman, Atmospheric pressure plasma of dielectric barrier discharges. Pure Appl. Chem. 77(2), 487–495 (2005)

    Article  Google Scholar 

  45. U. Kogelschatz, B. Eliasson, W. Egli, Dielectric-barrier discharges: principle and applications. J. Phys. IV France, 7 (1997)

    Google Scholar 

  46. J. Cech, P. Stahel, Z. Navratil, The influence of electrode gap width on plasma properties of diffuse coplanar surface barrier discharge in nitrogen. Eur. Phys. J. D 54, 259–264 (2009)

    Article  ADS  Google Scholar 

  47. C. Anderson, M. Hur, P. Zhang et al., Two-dimensional space-time-resolved emission spectroscopy on atmospheric pressure glows in helium with impurities. J. Appl. Phys. 96(4), (2004)

    Google Scholar 

  48. F. Massines, N. Gherardi, N. Naude, Glow and Townsend dielectric barrier discharge in various atmosphere. Plasma Phys. Control. Fusion 47, B577–B588 (2005). doi:10.1088/0741-3335/47/12B/S42

    Article  Google Scholar 

  49. D. Trunec, A. Brablec, J. Buchta, Atmosphericpressure glow discharge in neon. J. Phys. D: Appl. Phys. 34, 1697–1699. (2001). www.iop.org/Journals/jd, PII: S0022-3727(01)21705-7

  50. S. Okazaki, M. Kogoma, M. Uehara et al., Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmosphericpressure using a 50 Hz source. J. Phys. D Appl. Phys. 26, 889–892 (1993)

    Article  ADS  Google Scholar 

  51. R.B. Tyata, D.P. Subedi, R. Shrestha et al., Generation of uniform atmosphericpressure argon glow plasma by dielectric barrier discharge. Pramana, J. Phys. Indian Acad. Sci. 8(3), 507–517 (2012)

    Google Scholar 

  52. D.P. Subedi, R.B. Tyata, A. Khadgi et al., Treatment of water by dielectric barrier discharge. J. Sci. Technol. Trop. 5, 117–123 (2009)

    Google Scholar 

  53. S. Foster, C. Mohr, W. Viol, Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surf. Coat. Technol. 200, 827 (2005)

    Article  Google Scholar 

  54. J. Tioshifuji, T. Katsumata, H. Takikawa et al., Cold arc-plasma jet under atmosphericpressure for surface modification. Surf. Coat. Tech. 171, 302 (2003)

    Article  Google Scholar 

  55. Y. Takemura, Y. Kubota, N. Yamaguchi et al., Development of atmospheric plasma jet with long flame. Trans. Plasma Sci. 26, 1604 (2009)

    Article  ADS  Google Scholar 

  56. J. Choi, K. Matsuo, H. Yoshida et al., Double-layered atmospheric pressure plasma jet. Japanese J. Appl. Phys. 48 (2009)

    Google Scholar 

  57. A. Kuwabara, S. Kuroda, H. Kubot, Effects of electrodepositioning on the atmospheric-pressure DBD plasma torch. Plasma Process. Polym. 2, 305–309 (2005). doi:10.1002/ppap.200400089

    Article  Google Scholar 

  58. D.P. Subedi, R.B. Tyata, A. Shrestha et al., An atmospheric pressure non-thermal plasma jet in nitrogen for surface modification of polyethylene. J. Sci. Technol. Trop. 6, 49–52 (2010)

    Google Scholar 

  59. Y. Zhang, X.H. Wen, W.H. Yang, Plasma Sources Sci. Technol. 16, 441–447 (2007)

    Article  ADS  Google Scholar 

  60. X.M. Zhu, W. Cong-Che, Y.K. Pu, Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas. J. Phys. D: Appl. Phys. 41 (2008)

    Google Scholar 

  61. D.P. Subedi, R.B. Tyata, R. Shrestha et al., An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon. AIP Conf. Proc. 103 (2014)

    Google Scholar 

  62. U.M. Joshi, Surface modification of polymers by 50 Hz dielectric barrier discharge produced in air and argon at atmospheric pressure. Ph.D. thesis, Kathmandu University, Nepal, 2013

    Google Scholar 

  63. J.H. Kim, Y.H. Choi, Y.S. Hwang, Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas. Phys. Plasmas. 13 (2006)

    Google Scholar 

  64. O.A. Omarov, S.S. El’darov, A.M. Gadzhiev et al., An investigation of the optical characteristics of a pulse discharge in argon at atmospheric pressure in an external magnetic field. High Temp. 41(2), 161–165 (2003)

    Article  Google Scholar 

  65. L. Dong, J. Ran, Z. Mao, Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening. Appl. Phys. Lett. 86, 161501–161503 (2005)

    Article  ADS  Google Scholar 

  66. S.J. Kang, V.M. Donnelly, Optical absorption and emission spectroscopy studies of ammonia-containing plasmas. Plasma Sources Sci. Technol. 16, 265–272 (2007). doi:10.1088/0963-0252/16/2/008

    Article  ADS  Google Scholar 

  67. N. Britun, M. Gaillard, A. Ricard et al., Determination of the vibrational, rotational and electron temperatures in N2 and Ar–N2 rf discharge. J. Phys. D Appl. Phys. 40, 1022–1029 (2007). doi:10.1088/0022-3727/40/4/016

    Article  ADS  Google Scholar 

  68. J. Tynan, V.J. Law, P. Ward et al., Comparison of pilot and industrial scale atmospheric pressure glow discharge systems including a novel electro-acoustic technique for process monitoring. Plasma Sources Sci. Technol. 19 (2010)

    Google Scholar 

  69. D. Xiao, C. Cheng, J. Shen et al., Electron density measurements of atmospheric-pressurenon-thermal N2 plasma jet by Stark broadening and irradiance intensity methods. Phys. Plasmas. 21 (2014)

    Google Scholar 

  70. C.S. Wong, R. Mongkolnavin, Elements of Plasma Technology (Springer, Berlin, 2016)

    Book  Google Scholar 

  71. N. Balcon, atmospheric pressure radio frequency discharges, diagnostic and numerical modeling. Ph.D. thesis, Australian National University, Australia, 2007

    Google Scholar 

  72. D.T. Burns, Earlyproblems in the analysis and the determination of ozone. Fresenius J. Anal. Chem. 357, 178–183 (1997)

    Article  Google Scholar 

  73. M.B. Rubin, The history of ozone. Bull. Hist. Chem. 26(1), 1839–1868 (2001)

    MathSciNet  Google Scholar 

  74. J. Grundmann, S. Muller, R.J. Zahn, Treatment of soot by dielectric barrier discharges and ozone. Plasma Chem. Plasma Process. 25(5), (2005)

    Google Scholar 

  75. Z. Buntat, I.R. Smithand, N.A.M. Razali, Ozone generation using atmospheric pressure glow discharge in air. J. Phys. D: Appl. Phys. 42 (2009)

    Google Scholar 

  76. R. Bhatta, R. Kayastha, D.P. Subedi et al., Treatment of wastewater by ozone produced in dielectricbarrier discharge. J. Chem. 2015 (2015)

    Google Scholar 

  77. R. Shrestha, U.M. Joshi, D.P. Subedi, Experimental study of ozone generation by atmospheric pressure dielectric barrier discharge. Int. J. Recent Res. Rev. VIII(4), (2015)

    Google Scholar 

  78. M. Sira, D. Trunec, P. Stahel et al., Surface modification of polyethylene and polypropalene in atmospheric pressure glow discharge. J. Phys. D Appl. Phys. 38, 621 (2005)

    Article  ADS  Google Scholar 

  79. S.K. Oiseth, A. Krozer, B. Kasemo et al., Surface modification of spin-coated high-density polyethylene films by argon and oxygen glow discharge plasma treatments. Appl. Surf. Sci. 202, 92–103 (2002)

    Article  ADS  Google Scholar 

  80. P. Svarnas, N. Spyrou, B. Held, Polystyrene thin films treatment under DC point-to-plane low-pressure discharge in nitrogen for improving wettability. Eur. Phys. J. Appl. Phys. 28, 105–112 (2004)

    Article  ADS  Google Scholar 

  81. F. Zhi, Q. Yuchang, W. Hui, Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air. Plasma Sci. Technol 6, 2576 (2004)

    Article  ADS  Google Scholar 

  82. U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23 (2003)

    Google Scholar 

  83. E.C. Rangel, G.Z. Gadioli, N.C. Cruz, Investigations on the stability of plasma modified silicone surfaces. Plasmas Polym. 9(1), 35–48 (2004)

    Article  Google Scholar 

  84. D.P. Subedi, D.K. Madhup, K. Adhikari et al., Low pressure plasma treatment for the enhancement of wettability of polycarbonate. Indian J. Pure Appl. Phys. 46, 540–544 (2008)

    Google Scholar 

  85. B. Luepakdeesakoon, C. Saiwan, J.F. Scamehorn, Contact angle of surfactant solutions on precipitated surfactant surfaces. J. Surfactants Deterg. 9(2), 125–136 (2006)

    Article  Google Scholar 

  86. H.W. Fox, W.A. Zisman, The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. J. Colloid Sci. 5, 514–531 (1950)

    Article  Google Scholar 

  87. J. Drelich, J.D. Miller, Examination of Neumann’s equation-of-state for interfacial tensions. J. Colloid Interface Sci. 167, 217–220 (1994)

    Article  ADS  Google Scholar 

  88. N.T. Correia, J.J.M. Ramos, B.J.V. Saramago et al., Estimation of the surface tension of a solid: application to a liquid crystalline polymer. J. Colloid Interface Sci. 189, 361–369 (1997)

    Article  ADS  Google Scholar 

  89. D.Y. Kwok, C.N.C. Lam, A. Li et al., Measuring and interpreting contact angles: a complex issue. Colloids Surfaces A: Physiochem. Eng. Asp. 142, 219–235 (1998)

    Article  Google Scholar 

  90. M. Sira, P. Stahel, V. Bursikova et al., Activation of polyethylene and polypropylene in atmospheric pressure glow discharge. Czech J. Phys. 54, 835–839 (2004)

    Article  Google Scholar 

  91. R. Mahlberg, H.E.M. Niemi, F. Denes et al., Effect of oxygen and hexamethyldisiloxane plasma on morphology, wettability and adhesion properties of polypropylene and lignocellulosics. Int. J. Adhes. Adhes. 18, 283–297 (1998)

    Article  Google Scholar 

  92. S. Coulombe, V. Léveillé, S. Yonson et al., Miniature atmosphericpressure glow discharge torch (APGD-t) for local biomedical applications. Pure Appl. Chem. 78(6), 1147–1156 (2006)

    Article  Google Scholar 

  93. G. Fridman, M. Peddinghaus, H. Ayan et al., Blood coagulation and living tissue sterilization by floating-electrodedielectric barrier discharge in air. Plasma Chem. Plasma Process. 26, 425–442 (2006)

    Article  Google Scholar 

  94. M. Leduc, D. Guay, R.L. Leask et al., Cell permeabilization using a non-thermal plasma. New J. Phys. 11 (2009)

    Google Scholar 

  95. L. Xue-Chen, J. Peng-Ying, Y. Ning et al., Aspects of the upstreamregion in a plasma jet with dielectric barrier discharge configurations. Chin. Phys. B 21(4), 1–6 (2012)

    Google Scholar 

  96. R. Foest, E. Kindel, A. Ohl et al., RF capillary jet—a tool for localized surface treatment. Contrib. Plasma Phys. 47, 72–77 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Raju Bhai Tyata, Dr. Rajendra Shrestha, Mr. Amit Shrestha, Ms. Arati Khadgi, Ms. Rita Bhatta, and Mr. Jyoti Gurung for their contribution in this work. The authors would also like to thank Prof. Andrzej Huczko from Department of Chemistry, University of Warsaw, Poland for AFM and SEM analysis. We would also like to thank Mr. Suraj Sharma, for his assistance in drawing the schematic diagrams of plasma systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Prasad Subedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Subedi, D.P., Joshi, U.M., Wong, C.S. (2017). Dielectric Barrier Discharge (DBD) Plasmas and Their Applications. In: Rawat, R. (eds) Plasma Science and Technology for Emerging Economies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4217-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4217-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4216-4

  • Online ISBN: 978-981-10-4217-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics