CMBEBIH 2017 pp 459-464 | Cite as

Future trends and possibilities of using induced pluripotent stem cells (iPSC) in regenerative medicine

  • A. Tucak
  • Dž. VrabacEmail author
  • A. Smajić
  • A. Sažić
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 62)


Animal testing has shown unsatisfaction when it comes to examination of hepato- neuro- and cardiotoxicity, as well as in the development of new therapies, while use of in vitro model systems is limited by unavailability of human tissues. For this reason, use of human embryonic stem cells (hESC) as unlimited source for producing differentiated somatic progeny, represents a great medical advance.

Induced pluripotent stem cells (iPSC) represent a new type of stem cells that occur by reprogramming of genomes of adult stem cells, such as dermal fibroblasts into a pluripotent state. These cells have many similarities with embryonic stem cells, and their reprogramming requests transcription factors OCT4, SOX2, and KLF4. IPSC are characterized by the ability of recovery and differentiation into different cell types such as pancreatic β-cells, hepatocytes, cardiomyocytes, hematopoietic cells, which opens the door to the new methods of treatment of many diseases especially in the field of personalized regenerative medicine. This paperwork contains future trends and possibilities of using iPSC’s in regenerative personalized medicine, and with great certainty we can say that the discovery of the same has brought a revolutionary changes to medicine, and that these cells will soon be used not only for modeling of various diseases, but also for treating diseases and finding and testing new drugs that will help to improve the quality of life in many patients.


Stem cells Regenerative medicine Reprogramming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bianco, M. Riminucci, S. Gronthos, P. G. Robey. Bone Marow Stromal Stem Cells: Nature, Biology, and Potential Aplications. Stem Cells, 2001; 19(3): 180-192.Google Scholar
  2. 2.
    Z. Master, T. Caulfiel. Patient Booklet: What you need to know about stem cell therapies. Health Law Institute. 2014Google Scholar
  3. 3.
    S. Li, Q. Li. A promising approach to iPSC- based cell therapy for diabetic wound treatment: Direct lineage reprogramming, Mol Cell Endocrinol,2014; 393(1-2):8-15.Google Scholar
  4. 4.
    Stem cells fact. ISSCR. 2011; 2-7.Google Scholar
  5. 5.
    C. Federico, C. Waskow, eds. Stem Cells: From Basic Research to Therapy, Volume 1: Basic Stem Cell Biology, Tissue Formation during Development, and Model Organisms. CRC Press, 2014.Google Scholar
  6. 6.
    A. R. Meza, J. Melchior. Células-tronco no tratamento de doenças neurológicas. Portal ciências e cognição. 2015. URL:
  7. 7.
    R. Nat, A. Eigentler, G. Dechant. Human Pluripotent Stem Cells Modeling Neurodegenerative Diseases. In: Bhartiya D, Lenka N, ed. by. Pluripotent Stem Cells. 1st ed. InTech; 2013: 477-516.Google Scholar
  8. 8.
    K. Szebényi, Z. Erdei, A. Péntek, A. Sebe, T. Orbán, B. Sarkadi et al. Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Personalized Medicine, 2011;8:347-364.Google Scholar
  9. 9.
    W. Young, L. S. D’Souza, R. I. Lemischka, C. Schaniel. Patient-specific Induced Pluripotent Stem Cells as a Platform for Disease Modeling, Drug Discovery and Precision Personalized Medicine. J Stem Cell Res Ther, 2012;10:1-14.Google Scholar
  10. 10.
    L. A. Wiley, E. R. Burnight, A. E. Songstad, B. A. Tucker. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res, 2015;44:15-35.Google Scholar
  11. 11.
    L. M. Ferreira, M. A. Mostajo-Radji. How induced pluripotent stem cells are redefining personalized medicine. Gene, 2013; 520(1):1-6.Google Scholar
  12. 12.
    K. Takahashi, S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006; 126(4):663-676.Google Scholar
  13. 13.
    A. Kyttälä, R. Moraghebi, C. Valensisi, J. Kettunen, C. Andrus, K. Pasumarthy et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports, 2016;6(2):200-212.Google Scholar
  14. 14.
    D. Bhartiya, P. Nagvenkar, K. Sriraman, A. Shaikh. An Overview of Pluripotent Stem Cells. In: Bhartiya D, Lenka N, ed. by. Pluripotent Stem Cells. 1st ed. InTech; 2013: 1-9.Google Scholar
  15. 15.
    V. Spinelli, P. V. Guillot, P. De Coppi. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis, 2013;9(2):101-110.Google Scholar
  16. 16.
    J. D. Ebben, M. Zorniak, P. A. Clark, J. S. Kuo. Introduction to Induced Pluripotent Stem Cells: Advancing the Potential for Personalized Medicine. World Neurosurg, 2011;76 (3-4):270-275.Google Scholar
  17. 17.
    A. Liras, C. Segovia, A. S. Gaban. Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical Considerations. In: Bhartiya D, Lenka N, ed. by. Pluripotent Stem Cells. 1st ed. InTech; 2013: 529-553.Google Scholar
  18. 18.
    V. K. Singh, M. Kalsan, N. Kumar, A. Saini, R. Chandra. Induced pluripotent stem cells :applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol, 2015;3(2):1-18.Google Scholar
  19. 19.
    Y. S. Chun, K. Byun, B. Lee. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anat Cell Biol, 2011;44(4):245-255Google Scholar
  20. 20.
    V. Sauer, N. Roy-Chowdhury, C. Guha, J. Roy-Chowdhury. Induced pluripotent stem cells as a source of hepatocytes. Curr Pathobiol Rep, 2015; 2(1): 11-22.Google Scholar
  21. 21.
    D. Obradović, B. Balint, E. Dinčić, R. Raičević, S. Obradović, G. Tončev et al. Primena matičnih ćelija u lečenju neuroloških oboljenja – da li je budućnost već stigla? Vojnosanit Pregl, 2008; 65(6): 473–480.Google Scholar
  22. 22.
    N. Zhang, B. J. Bailus, K. L. Ring, L. M. Ellerby. iPSC-based drug screening for Huntington’s disease. Brain Res, 2016; 1638:42-56.Google Scholar
  23. 23.
    H. Masumoto, J. K. Yamashita. Pluripotent Stem Cells for Cardiac Cell Therapy: The Application of Cell Sheet Technology. In: Bhartiya D, Lenka N, ed. by. Pluripotent Stem Cells. 1st ed. InTech; 2013: 459-474.Google Scholar
  24. 24.
    M. A. G. Heyden, M. K. J. Jonsson. Personalized medicine and the role of induced pluripotent stem cells. Cardiovascular Research, 2012;95:395–396.Google Scholar
  25. 25.
    A. Mathur, P. Loskill, K. Shao, N. Huebsch, S. Hong, S. G. Marcus et al. Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications. Sci Rep, 2015;5:8883.Google Scholar
  26. 26.
    S. G. Priori. Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Long QT Syndrome: Is Personalized Medicine Ready for Prime Time? Circ Res, 2011;109(8):822-824.Google Scholar
  27. 27.
    S. J. Sharkis, R. J. Jones, C. Civin, Y. Y. Yang. Pluripotent Stem Cell-Based Cancer Therapy: Promise and Cahallenges. Sci Transl Med. 2012;4(127):127ps9.Google Scholar
  28. 28.
    I. Sancho-Martinez, E. Nivet, Y. Xia, T. Hishada, A. Aguirre, A. Ocampo et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat commun, 2016;7:10743.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of PharmacyUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Faculty of Agriculture and Food SciencesUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations