Skip to main content

Arbuscular Mycorrhizal Fungi and Tolerance of Drought Stress in Plants

  • Chapter
  • First Online:
Arbuscular Mycorrhizas and Stress Tolerance of Plants

Abstract

Drought stress has strong inhibition in plant growth and crop production. Arbuscular mycorrhizal fungi (AMF) can colonize the roots of 80% of land’s plants to establish arbuscular mycorrhizal symbiosis. A relative short-term soil drought did not appear to discourage root AMF colonization, whereas a long-term soil drought intensity considerably decreased root colonization and hyphal growth in the soil. Such change in mycorrhizal development still strongly stimulated the improvement of plant growth and increased plant survival under drought stress. AMF had shown to enhance drought tolerance in various plants. Firstly, mycorrhizal plants could adapt the drought stress in morphology, especially leaf epicuticular wax and root morphology. And mycorrhizal plants possessed direct pathway of water uptake by extraradical hyphae. In addition, AMF enhanced drought tolerance of the host plant through physiological mechanisms in nutrient uptake and biochemical mechanisms regarding hormones, osmotic adjustment, and antioxidant systems. AMF also released glomalin into soil, defined as glomalin-related soil protein, to improve soil structure, thereby regulating water relations of plant/soil. Molecule mechanisms about expression of relevant stressed genes were clarified a bit more detail. Future perspectives in this field are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaspour H, Saeidi-Sar S, Afshari H et al (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedlings to drought stress under glasshouse conditions. J Plant Physiol 169:704–709

    Article  CAS  PubMed  Google Scholar 

  • Allen MF (2006) Water dynamics of mycorrhizas in arid soils. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 74–97

    Chapter  Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Allen MF, Boosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Article  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold, or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. In: Mehrotra VS (ed) Mycorrhiza: role and applications. Allied Publishers, Nagpur, pp 136–162

    Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    Article  PubMed  PubMed Central  Google Scholar 

  • Augé RM, Stodola AJW, Tims JE et al (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  Google Scholar 

  • Azcón R, Gómez M, Tobar R (1996) Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biol Fertil Soils 22:156–161

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotti A et al (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum. New Phytol 114:207–215

    Article  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Ames RN et al (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72:565–571

    Article  CAS  Google Scholar 

  • Bryla DR, Duniway JM (1997) Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant Soil 197:95–103

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R et al (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57

    Article  CAS  Google Scholar 

  • Comas LH, Becker SR, Von Mark VC et al (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz AF, Ishii T, Kadoya K (2000) Effects of arbuscular mycorrhizal fungi on tree growth, leaf water potential, and levels of 1-aminocyclopropane-1-carboxylic acid and ethylene in the roots of papaya under water-stress conditions. Mycorrhiza 10:121–123

    Article  CAS  Google Scholar 

  • Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72:457–471

    Article  CAS  Google Scholar 

  • Davies FT, Potter J, Linderman RG (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol 139:289–294

    Article  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  Google Scholar 

  • Douds DD, Schenck NC (1991) Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol Biochem 23:177–183

    Article  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN et al (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542

    Article  Google Scholar 

  • Finlay RD, Lindahl BD, Taylor AFS (2008) Responses of mycorrhizal fungi to stress. In Br Mycol Soc Symp Ser, vol 27. Stress in yeast and filamentous fungi. Academic Press, p 201–219

    Google Scholar 

  • Fitter AH (1988) Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J Exp Bot 39:595–603

    Article  Google Scholar 

  • Gaur A, Adholeya A (1999) Mycorrhizal effects on the acclimatization, survival, growth and chlorophyll of micropropagated Syngonium and Dracaena inoculated at weaning and hardening stages. Mycorrhiza 9:215–219

    Article  Google Scholar 

  • Gemma JN, Koske RE, Roberts EM et al (1997) Mycorrhizal fungi improve drought resistance in creeping bentgrass. J Turfgrass Sci 73:15–29

    Google Scholar 

  • George E, Häussler KU, Vetterlein D et al (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Article  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and pre-symbiotic mycelial growth – physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, New York, pp 3–32

    Chapter  Google Scholar 

  • Goicoechea N, Szalai G, Antolín MC et al (1998) Influence of arbuscular mycorrhizae and rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706–711

    Article  CAS  Google Scholar 

  • Graham JH, Linderman RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of Troyer citrange. New Phytol 91:83–189

    Google Scholar 

  • Graham JH, Syvertsen JP, Smith ML (1987) Water relations of mycorrhizal and phosphorus-fertilized non-mycorrhizal Citrus under drought stress. New Phytol 105:411–419

    Article  CAS  Google Scholar 

  • Griffin DM (1972) Ecology of soil fungi. Chapman & Hall, London

    Google Scholar 

  • He X, Zhao J, Li S (1999) Effects of water stress and VA mycorrhizal fungi on the growth of mung bean. Acta Agric Nudeatae Sin 14:290–294

    Google Scholar 

  • He F, Zhang HQ, Tang M (2016) Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza 26:311–323

    Article  CAS  PubMed  Google Scholar 

  • Henderson JC, Davies FT (1990) Drought acclimation and the morphology of mycorrhizal Rosa hybrida L cv Ferdy is independent of leaf elemental content. New Phytol 115:503–510

    Article  CAS  Google Scholar 

  • Huang YM, Srivastava AK, Zou YN et al (2014) Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front Microbiol 5:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaushai M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78

    Article  Google Scholar 

  • Khan SA (2003) Interaction of vesicular arbuscular mycorrhizae, hormones and drought in soybeans. Dissertation, The City University of New York, New York

    Google Scholar 

  • Khoyerdi FF, Shamshiri MH, Estaji A (2016) Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Sci Hortic 198:44–51

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldán A (2009) Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Appl Soil Ecol 42:160–165

    Article  Google Scholar 

  • Koide R (1993) Physiology of the mycorrhizal plant. Adv Plant Path 9:33–54

    Google Scholar 

  • Kolenc Z, Vodnik D, Mandelc S et al (2016) Hop (Humulus lupulus L.) response mechanisms in drought stress: proteomic analysis with physiology. Plant Physiol Biochem 105:67–78

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Maldonado-Mendoza I, Lopez-Meyer M et al (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Guo C, Chen ZL et al (2016) Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emirates J Food Agric 28:251–256

    Article  Google Scholar 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N et al (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. Grown under different water stress conditions. Eur J Soil Biol 46:151–156

    Article  Google Scholar 

  • Martinez J-P, Lutts S, Schanck A et al (2004) Is osmotic adjustment required for drought stress resistance in the Mediterranean shrub Atriplex halimus L? J Plant Physiol 161:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Nasim G (2010) The role of arbuscular mycorrhizae in inducing resistance to drought and salinity stress in crops. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Berlin, pp 119–141

    Chapter  Google Scholar 

  • Nelsen CE, Safir GR (1982a) Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorous nutrition. Planta 154:407–413

    Article  CAS  PubMed  Google Scholar 

  • Nelsen CE, Safir GR (1982b) The water relations of well-watered, mycorrhizal, and nonmycorrhizal onion plants. J Am Soc Hortic Sci 107:271–274

    Google Scholar 

  • Neumann E, Schmid B, Romheld V et al (2009) Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Mycorrhiza 20:13–23

    Article  PubMed  Google Scholar 

  • Nichols KA (2008) Indirect contributions of AM fungi and soil aggregation to plant growth and protection. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Science, Berlin, pp 177–194

    Chapter  Google Scholar 

  • Porcel R, Azcón R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65:211–221

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcón R et al (2006a) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Cano C et al (2006b) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis. Microb Ecol 52:575–582

    Article  PubMed  Google Scholar 

  • Porcel R, Aroca R, Cano C et al (2007) A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environ Exp Bot 60:251–256

    Article  CAS  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C et al (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Serrano E, Ocon A et al (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochem 68:33–40

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA et al (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, Grube M (eds) Symbioses and stress. Springer, Berlin, pp 357–374

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, del Mar AM, Bárzana G et al (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579

    Article  CAS  PubMed  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  PubMed  Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transport in soybean. Science 172:581–583

    Article  CAS  PubMed  Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1972) Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol 49:700–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Díaz M, Honrubia M (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 167–178

    Chapter  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. Landes Company, Austin, pp 11–28

    Google Scholar 

  • Sieverding E (1981) Influence of soil water regimes in VA mycorrhiza: I. Effect on plant growth, water utilization and development of mycorrhiza. Z Acker Pflanzenbau 150:400–411

    Google Scholar 

  • Stahl PD, Schuman GE, Frost SM et al (1998) Arbuscular mycorrhizae and water stress tolerance of Wyoming big sagebrush seedlings. Soil Sci Soc Am J 62:1309–1313

    Article  CAS  Google Scholar 

  • Sweatt MR, Davies FT (1984) Mycorrhizae, water relations, growth and nutrient uptake of geranium grown under moderately high phosphorus regimes. J Am Soc Hortic Sci 109:210–213

    Google Scholar 

  • Sylvia DM, Schenck NC (1983) Germination of chlamydospores of three Glomus species as affected by soil matric potential and fungal contamination. Mycologia 75:30–35

    Article  Google Scholar 

  • Tommerup IC (1984) Effect of soil water potential on spore germination by vesicular- arbuscular mycorrhizal fungi. Trans Br Mycol Soc 3:193–202

    Article  Google Scholar 

  • Tuo XQ, Li S, Wu QS et al (2015) Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: changes in chlorophyll and proline metabolism. Sci Hortic 197:130–134

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB et al (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN (2009a) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55:436–442

    CAS  Google Scholar 

  • Wu QS, Zou YN (2009b) Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp Agric Scientist 92:33–38

    Google Scholar 

  • Wu QS, Zou YN (2009c) Arbuscular mycorrhizas improve water relations of plants exposed to drought. In: Hemantaranjan A (ed) Advances in plant physiology, vol 11. Scientific Publishers, Jodhpur, pp 23–52

    Google Scholar 

  • Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Xia RX, Zou YN et al (2007) Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiol Plant 29:543–549

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Article  Google Scholar 

  • Wu QS, Zou YN, He XH (2011a) Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci Hortic 129:294–298

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Wang GY (2011b) Arbuscular mycorrhizal fungi and acclimatization of micropropagated citrus. Commun Soil Sci Plant Anal 42:1825–1832

    Article  CAS  Google Scholar 

  • Wu QS, He XH, Zou YN et al (2012) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68:27–35

    Article  CAS  Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Abd-Allah EF (2014) Mycorrhizal association and ROS in plants. In: Ahmad P (ed) Oxidative damage to plants. Elsevier Inc, Amsterdam, pp 453–475

    Chapter  Google Scholar 

  • Xue HQ (2004) Water ecophysiology effects of arbuscular mycorrhizal fungi on Citrus grandis L. Osbeck cv. Shatianyou in Changshou. Dissertation, Southwest Agriculture University, Changshou

    Google Scholar 

  • Yano-Melo AM, Saggin OJ, Lima JM et al (1999) Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plantlets. Mycorrhiza 9:119–123

    Article  CAS  Google Scholar 

  • Yokota A, Takahara K, Akashi K (2006) Water stress. In: Reddy KJ, Rao KV, Raghavendra AS (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 15–39

    Chapter  Google Scholar 

  • Yooyongwech S, Phaukinsang N, Chaum S et al (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

  • Zhang Y, Zhong CL, Chen Y et al (2010) Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New For 40:261–267

    Article  Google Scholar 

  • Zhang Y, Yao Q, Li J et al (2015) Contribution of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol Prog 14:84

    Article  Google Scholar 

  • Zou YN, Wu QS, Huang YM et al (2013) Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS One 8:e80568

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou YN, Srivastava AK, Wu QS et al (2014) Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Arch Agron Soil Sci 60:1103–1114

    Article  CAS  Google Scholar 

  • Zou YN, Huang YM, Wu QS et al (2015a) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25:143–152

    Article  CAS  PubMed  Google Scholar 

  • Zou YN, Srivastava AK, Ni QD et al (2015b) Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front Microbiol 6:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou YN, Srivastava AK, Wu QS (2016) Glomalin: a potential soil conditioner for perennial fruits. Int J Agric Biol 18:293–297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Plan in Scientific and Technological Innovation Team of Outstanding Young, Hubei Provincial Department of Education (T201604) and the National Natural Scientific Foundation of China (31101513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang-Sheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, QS., Zou, YN. (2017). Arbuscular Mycorrhizal Fungi and Tolerance of Drought Stress in Plants. In: Wu, QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_2

Download citation

Publish with us

Policies and ethics