Advertisement

VCG and ECG indexes for classification of patients with Myocardial Infarction

  • R. CorreaEmail author
  • P. D. Arini
  • L. S. Correa
  • E. Laciar
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 60)

Abstract

We proposed aclassification technique for patients with Myocardial Infarction (MI), based on an Electrocardiographic (ECG) and Vectorcardiographic (VCG) signals analysis. We suggest and statistically analyzetwo VCGsandnine orthogonal ECG indexes, i.e., a) QRS loop Perimeter, b) Angle between QRS and T loops, c-e) the area under the QRS,T-wave and ST segment in X, Y and Z leads.

For classification, the population was divided into two groups according to the infarcted area, that is, anterior or inferior sectors (MI-ant and MI-inf, respectively).The results indicate that combining eight indexes, we could separate out the MI patients in MI-ant vs MI-inf with a sensitivity = 89.8%, 84.8%, respectively, and an accuracy = 89.8%.

We conclude that the proposed technique couldbe suitableto estimatethe infarcted area localization.

Keywords

ECG VCG MI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Thygesen, J. S. Alpert, A. S. Jaffe and others “Third Universal Definition of Myocardial Infarction,” Journal of the American College of Cardiology, vol. 60, no. 16, pp. 1581–1598, 2012.Google Scholar
  2. 2.
    M. Arif, I. A. Malagore, and F. A. Afsar, “Detection and localization of myocardial infarction using K-nearest neighbor classifier,” Journal of medical systems, vol. 36, no. 1, pp. 279–289, 2012.Google Scholar
  3. 3.
    G. Bakul and U. Tiwary, “Automated risk identification of myocardial infarction using relative frequency band coefficient (RFBC) features from ECG,” The open biomedical engineering journal, vol. 4, p. 217, 2010.Google Scholar
  4. 4.
    A. Keshtkar, H. Seyedarabi, P. Sheikhzadeh, and others, “discriminant analysis between myocardial infarction patients and healthy subjects using Wavelet Transformed signal averaged electrocardiogram and probabilistic neural network,” Journal of Medical Signals and Sensors, vol. 3, no. 4, 2013.Google Scholar
  5. 5.
    N. Safdarian, N. J. Dabanloo, and G. Attarodi, “A New Pattern Recognition Method for Detection and Localization of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of ECG Signal,” Journal of Biomedical Science and Engineering, vol. 2014, 2014.Google Scholar
  6. 6.
    R. Correa, P. Arini, L. Correa, M. Valentinuzzi, and E. Laciar, “Identification of Patients with Myocardial Infarction: Vectorcardiographic and Electrocardiographic Analysis,” Methods of Information in Medicine, vol. 55, pp. 242–249, 2016.Google Scholar
  7. 7.
    R. Correa, P. Arini, L. Correa, M. Valentinuzzi, and E. Laciar, “Clasificación automática de pacientes con Infarto de Miocardio,” XX Congreso Argentino Bioingeniería y IX Jornadas Ingeniería Clínica (SABI2015), 28-30 October 2015, San Nicolás-Buenos Aires-Argentina, 2015.Google Scholar
  8. 8.
    R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signal daten bank CARDIODAT der PTB über das Internet,” Biomedizinische Technik, Band 40, Ergänzungsband, vol. 1, p. 317, 1995.Google Scholar
  9. 9.
    R. Correa, P. D. Arini, L. Correa, M. E. Valentinuzzi, and E. Laciar, “Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set,” Journal of electrocardiology, vol. 46, no. 6, pp. 635–643, 2013.Google Scholar
  10. 10.
    R. Correa, P. D. Arini, L. S. Correa, M. Valentinuzzi, and E. Laciar, “Novel technique for ST-T interval characterization in patients with acute myocardial ischemia,” Computers in biology and medicine, vol. 50, pp. 49–55, 2014.Google Scholar
  11. 11.
    I. Kardys, J. A. Kors, I. M. van der Meer, A. Hofman, D. A. . van der Kuip, and J. C. M. Witteman, “Spatial QRS-T angle predicts cardiac death in a general population,” European Heart Journal, vol. 24, no. 14, pp. 1357–1364, 2003.Google Scholar
  12. 12.
    A. Rubulis, L. Bergfeldt, L. Rydén, and J. Jensen, “Prediction of cardiovascular death and myocardial infarction by the QRS-T angle and T vector loop morphology after angioplasty in stable angina pectoris: an 8-year follow-up,” Journal of electrocardiology, vol. 43, no. 4, pp. 310–317, 2010.Google Scholar
  13. 13.
    D. Altman, Practical statistics for medical research. Chapman and Hall/CRC; 1st ed edition.Google Scholar
  14. 14.
    J. G. Flores, E. G. Jiménez, and G. R. Gómez, Análisis discriminante. La Muralla, 2001.Google Scholar
  15. 15.
    J. Flores, E. Jiménez, and G. G, Análisis Discriminante. Editorial La Muralla, S.A.; Edición: 1, 2001.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • R. Correa
    • 1
    • 2
    • 3
    Email author
  • P. D. Arini
    • 3
    • 4
  • L. S. Correa
    • 1
    • 3
  • E. Laciar
    • 1
    • 3
  1. 1.Gabinete de Tecnología Médica, Facultad de IngenieríaUniversidad Nacional de San Juan (UNSJ)San JuanArgentina
  2. 2.Departamento de Física, Facultad de IngenieríaUniversidad Nacional de San Juan (UNSJ)San JuanArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Instituto de Ingeniería Biomédica (IIBM), Facultad de Ingeniería (FI)Universidad de Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations