Skip to main content

Methods and Means of Polarization Correlation of Fields of Laser Radiation Scattered by Biological Tissues

  • 172 Accesses

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Any physical object or medium is a complex, optically heterogeneous, structure. Such heterogeneity is characterized by the spatial distributions of the overall optical parameters (refractive indices and absorption) and their anisotropic components (linear and circular birefringence, linear and circular dichroism).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Tuchin, L. Wang, D. Zimnjakov, Optical Polarization in Biomedical Applications (Springer, New York, USA, 2006).

    CrossRef  Google Scholar 

  2. R. Chipman, Polarimetry. in ed. by M. Bass. Handbook of Optics: Vol I—Geometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill Professional, New York, 2010) , pp. 22.1–22.37

    Google Scholar 

  3. N. Ghosh, M. Wood, A. Vitkin, in Polarized Light Assessment of Complex Turbid Media such as Biological Tissues Via Mueller Matrix Decomposition, ed. by V. Tuchin. Handbook of Photonics for Biomedical Science (CRC Press, Taylor & Francis Group, London, 2010), pp. 253–282

    Google Scholar 

  4. S. Jacques, Polarized Light Imaging of Biological Tissues, in Handbook of Biomedical Optics. ed. by D. Boas, C. Pitris, N. Ramanujam (CRC Press, Boca Raton, London, New York, 2011), pp. 649–669

    Google Scholar 

  5. N. Ghosh, Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011)

    CrossRef  ADS  Google Scholar 

  6. M. Swami, H. Patel, P. Gupta, Conversion of 3×3 Mueller matrix to 4×4 Mueller matrix for non-depolarizing samples. Opt. Commun. 286, 18–22 (2013)

    CrossRef  ADS  Google Scholar 

  7. D. Layden, N. Ghosh, A. Vitkin, in Quantitative Polarimetry for Tissue Characterization and Diagnosis, ed. by R. Wang, V. Tuchin. Advanced Biophotonics: Tissue Optical Sectioning (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2013) , pp. 73–108

    Google Scholar 

  8. T. Vo-Dinh, Biomedical Photonics Handbook, 3 vol. set, 2nd edn. (CRC Press, Boca Raton, 2014)

    Google Scholar 

  9. A. Vitkin, N. Ghosh, A. Martino, Tissue Polarimetry, in Photonics: Scientific Foundations, Technology and Applications, 4th edn., ed. by D. Andrews (Wiley, Hoboken, New Jersey, 2015), pp. 239–321

    CrossRef  Google Scholar 

  10. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd edn. (SPIE Press, Bellingham, Washington, USA, 2007).

    CrossRef  Google Scholar 

  11. W. Bickel, W. Bailey, Stokes vectors, Mueller matrices, and polarized scattered light. Am. J. Phys. 53(5), 468–478 (1985)

    CrossRef  ADS  Google Scholar 

  12. A. Doronin, C. Macdonald, I. Meglinski, Propagation of coherent polarized light in turbid highly scattering medium. J. Biomed. Opt. 19(2), 025005 (2014)

    CrossRef  ADS  Google Scholar 

  13. A. Doronin, A. Radosevich, V. Backman, I. Meglinski, Two electric field Monte Carlo models of coherent backscattering of polarized light. J. Opt. Soc. America A 31(11), 2394 (2014)

    CrossRef  ADS  Google Scholar 

  14. A. Ushenko, V. Pishak, in Laser Polarimetry of Biological Tissue: Principles and Applications, ed. by V. Tuchin. Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics (Environmental and Material Science, 2004) , pp. 93–138

    Google Scholar 

  15. P. Li, H.R. Lee, S. Chandel, C. Lotz, F. Kai Groeber-Becker, S. Dembski, R. Ossikovski, H. Ma, T. Novikova, Analysis of tissue microstructure with Mueller microscopy: logarithmic decomposition and Monte Carlo modeling. J. Biomed. Opt. 25(1), (2020)

    Google Scholar 

  16. O. Angelsky, A. Ushenko, Y. Ushenko, V. Pishak, A. Peresunko, in Statistical, Correlation and Topological Approaches in Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues. Handbook of Photonics for Biomedical Science (2010), pp. 283–322

    Google Scholar 

  17. Y. Ushenko, T. Boychuk, V. Bachynsky, O. Mincer, in Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches, ed. by V. Tuchin. Handbook of Coherent-Domain Optical Methods (Springer Science+Business Media, 2013)

    Google Scholar 

  18. O. Angelsky, A. Ushenko, Y. Ushenko, Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes. Phys. Med. Biol. 50(20), 4811–4822 (2005)

    CrossRef  Google Scholar 

  19. V. Ushenko, O. Dubolazov, A. Karachevtsev, Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer. Appl. Opt. 53(10), B128 (2016)

    CrossRef  Google Scholar 

  20. A. Ushenko, A. Sdobnov, A. Dubolazov, M. Grytsiuk, Y. Ushenko, A. Bykov, I. Meglinski, Stokes-correlometry analysis of biological tissues with polycrystalline structure. IEEE J. Sel. Top. Quantum Electron. 25(1), 8438957 (2019)

    CrossRef  Google Scholar 

  21. O. Vanchulyak, O. Ushenko, V. Zhytaryuk, V. Dvorjak, O. Pavlyukovich, O. Dubolazov, N. Pavlyukovich, N.P. Penteleichuk, Stokes-correlometry of polycrystalline films of biological fluids in the early diagnostics of system pathologies. Proc. SPIE—Int. Soc. Opt. Eng. 11105, 1110519 (2019)

    Google Scholar 

  22. E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)

    CrossRef  ADS  MathSciNet  Google Scholar 

  23. J. Tervo, T. Setala, A. Friberg, Degree of coherence for electromagnetic. Opt. Express 11, 1137–1143 (2003)

    CrossRef  ADS  Google Scholar 

  24. J.M. Movilla, G. Piquero, R. Martínez-Herrero, P.M. Mejías, Parametric characterization of non-uniformly polarized. Opt. Commun. 149, 230–234 (1998)

    CrossRef  ADS  Google Scholar 

  25. J. Ellis, A. Dogariu, Complex degree of mutual polarization. Opt. Lett. 29, 536–538 (2004)

    CrossRef  ADS  Google Scholar 

  26. C. Mujat, A. Dogariu, Statistics of partially coherent beams: a numerical analysis. J. Opt. Soc. Am. A 21(6), 1000–1003 (2004)

    CrossRef  ADS  Google Scholar 

  27. F. Gori, Matrix treatment for partially polarized, partially coherent beams. Opt. Lett. 23, 241–243 (1998)

    CrossRef  ADS  Google Scholar 

  28. E. Wolf, Significance and measurability of the phase of a spatially coherent optical field. Opt. Lett. 28, 5–6 (2003)

    CrossRef  ADS  Google Scholar 

  29. M. Mujat, A. Dogariu, Polarimetric and spectral changes in random electromagnetic fields. Opt. Lett. 28, 2153–2155 (2003)

    CrossRef  ADS  Google Scholar 

  30. J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Interferometric measurement of the degree of polarization and control of the contrast of intensity fluctuations. Opt. Lett. 29, 1536–1538 (2004)

    CrossRef  ADS  Google Scholar 

  31. S. Manhas, M.K. Swami, P. Buddhiwant, N. Ghosh, P.K. Gupta, K. Singh, Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Opt. Exp. 14, 190–202 (2006)

    CrossRef  ADS  Google Scholar 

  32. Y. Deng, S. Zeng, Q. Lu, Q. Luo, Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption. Opt. Exp. 15, 9672–9680 (2007)

    CrossRef  ADS  Google Scholar 

  33. S.Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996)

    CrossRef  ADS  Google Scholar 

  34. Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, H. Ma, A study on forward scattering Mueller matrix decomposition in anisotropic medium. Opt. Exp. 21, 18361–18370 (2013)

    CrossRef  ADS  Google Scholar 

  35. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.L. Totobenazara, M.R. Antonelli, P. Validire, Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt. 18, 046014 (2013)

    CrossRef  ADS  Google Scholar 

  36. V. Devlaminck, Physical model of differential Mueller matrix for depolarizing uniform media. J. Opt. Soc. America A 30(11), 2196 (2013)

    CrossRef  ADS  MathSciNet  Google Scholar 

  37. Y.A. Ushenko, G.D. Koval, A.G. Ushenko, O.V. Dubolazov, V.A. Ushenko, O.Y. Novakovskaia, Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis. J. Biomed. Opt. 21 (7), 071116 (2016)

    Google Scholar 

  38. M. Borovkova, M. Peyvasteh, O. Dubolazov, Y. Ushenko, V. Ushenko, A. Bykov, S. Deby, J. Rehbinder, T. Novikova, I. Meglinski, Complementary analysis of Mueller-matrix images of optically anisotropic highly scattering biological tissues. J. Eur. Opt. Soc. 14(1), 20 (2018)

    CrossRef  Google Scholar 

  39. V. Ushenko, A. Sdobnov, A. Syvokorovskaya, A. Dubolazov, O. Vanchulyak, A. Ushenko, Y. Ushenko, M. Gorsky, M. Sidor, A. Bykov, I. Meglinski, 3D Mueller-matrix diffusive tomography of polycrystalline blood films for cancer diagnosis. Photonics 5(4), 54 (2018)

    CrossRef  Google Scholar 

  40. L. Trifonyuk, W. Baranowski, V. Ushenko, O. Olar, A. Dubolazov, Y. Ushenko, B. Bodnar, O. Vanchulyak, L. Kushnerik, M. Sakhnovskiy, 2D-Mueller-matrix tomography of optically anisotropic polycrystalline networks of biological tissues histological sections. Opto-Electron. Rev. 26(3), 252–259 (2018)

    CrossRef  ADS  Google Scholar 

  41. V.A. Ushenko, A.V. Dubolazov, L.Y. Pidkamin, M.Y. Sakchnovsky, A.B. Bodnar, Y.A. Ushenko, A.G. Ushenko, A. Bykov, I. Meglinski, Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism. Laser Phys. 28(2), 025602 (2018)

    CrossRef  ADS  Google Scholar 

  42. V.A. Ushenko, A.Y. Sdobnov, W.D. Mishalov, A.V. Dubolazov, O.V. Olar, V.T. Bachinskyi, A.G. Ushenko, Y.A. Ushenko, O.Y. Wanchuliak, I. Meglinski, Biomedical applications of Jones-matrix tomography to polycrystalline films of biological fluids. J. Innovative Opt. Health Sci. 12(6), 1950017 (2019)

    CrossRef  Google Scholar 

  43. M. Borovkova, L. Trifonyuk, V. Ushenko, O. Dubolazov, O. Vanchulyak, G. Bodnar, Y. Ushenko, O. Olar, O. Ushenko, M. Sakhnovskiy, A. Bykov, I. Meglinski, Mueller-matrix-based polarization imaging and quantitative assessment of optically anisotropic polycrystalline networks. PLoS ONE 14(5), e0214494 (2019)

    CrossRef  Google Scholar 

  44. O.Y. Novakovska, Polarization correlometry of characteristic states of Muller-matrix images of phase-inhomogeneous biological layers. Semicond. Phys. Quantum Electron. Optoelectron. 15(3), 230–237 (2012)

    Google Scholar 

  45. A.G. Ushenko, Y.A. Ushenko, Y.Y. Tomka, O.V. Dubolazov, O.Y. Telenga, V.I. Istratiy, A.O. Karachevtsev, The interconnection between the coordinate distribution of Muller-matrixes images characteristics values of biological liquid crystals net and the pathological changes of human tissues : 12–16 July 2010, 9th Euro-American Workshop on Information Optics. Helsinki, Finland (2010)

    Google Scholar 

  46. Y.A. Ushenko, O.V. Dubolazov, O.Y. Telenga, A.P. Angelsky, A.O. Karachevtcev, V. Balanetska, Complex degree of mutual anisotropy of biological liquid crystals net. Proc. SPIE 8087, 80872Q (2011)

    CrossRef  ADS  Google Scholar 

  47. O.V. Angelsky, Y.A. Ushenko, V.O. Balanetska, The degree of mutual anisotropy of biological liquids polycrystalline nets as a parameter in diagnostics and differentiations of hominal inflammatory processes. Proc. SPIE 8338, 83380S (2011)

    CrossRef  ADS  Google Scholar 

  48. Y.A. Ushenko, A.V. Dubolazov, A.O. Karachevtcev, N.I. Zabolotna, Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes. Proc. SPIE 8134, 81340O (2011)

    CrossRef  ADS  Google Scholar 

  49. Y. Ushenko, G. Koval, A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaia, Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis. J. Biomed. Opt. 21(7), 071116 (2016)

    CrossRef  ADS  Google Scholar 

  50. A. Ushenko, A. Dubolazov, V. Ushenko, O. Novakovskaya, Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations. J. Biomed. Opt. 21(7), 071110 (2016)

    CrossRef  ADS  Google Scholar 

  51. V. Ushenko, N. Pavlyukovich, L. Trifonyuk, Spatial-frequency azimuthally stable cartography of biological polycrystalline networks. Int. J. Opt. 2013, 1–7 (2013)

    CrossRef  Google Scholar 

  52. V.P. Ungurian, O.I. Ivashchuk, V.O. Ushenko, Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations. Proc. SPIE 8338, 83381L (2011)

    CrossRef  ADS  Google Scholar 

  53. V.A. Ushenko, O.V. Dubolazov, A.O. Karachevtsev, Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer. Appl. Opt. 53, B128–B139 (2014)

    CrossRef  Google Scholar 

  54. V.P. Prysyazhnyuk, Y.A. Ushenko, A.V. Dubolazov, A.G. Ushenko, V.A. Ushenko, Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl. Opt. 55, B126–B132 (2016)

    CrossRef  Google Scholar 

  55. V.A. Ushenko, M.S. Gavrylyak, Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks anisotropy. Proc. SPIE 8812, 88120Y (2013)

    CrossRef  ADS  Google Scholar 

  56. V.A. Ushenko, M.P. Gorsky, Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer. Opt. Spectrosc. 115, 290–297 (2013)

    CrossRef  ADS  Google Scholar 

  57. V.A. Ushenko, A.V. Dubolazov, Correlation and self similarity structure of polycrystalline network biological layers Mueller matrices images. Proc. SPIE 8856, 88562D (2013)

    CrossRef  ADS  Google Scholar 

  58. V.O. Ushenko, Spatial-frequency polarization phasometry of biological polycrystalline networks. Opt. Mem. Neur. Netw. 22, 56–64 (2013)

    CrossRef  Google Scholar 

  59. V.A. Ushenko, N.D. Pavlyukovich, L. Trifonyuk, Spatial-frequency azimuthally stable cartography of biological polycrystalline networks. Int. J. Opt. 683174, 2013 (2013)

    Google Scholar 

  60. Y.A. Ushenko, Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues. Quantum. Electron. 42, 727–732 (2012)

    CrossRef  ADS  Google Scholar 

  61. V.A. Ushenko, Complex degree of mutual coherence of biological liquids. Proc. SPIE 8882, 88820V (2013)

    CrossRef  ADS  Google Scholar 

  62. Yu.A. Ushenko, Jones-matrix mapping of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes. Appl. Opt. 55, B113–B119 (2016)

    CrossRef  Google Scholar 

  63. L. Cassidy, Basic concepts of statistical analysis for surgical research. J. Surg. Res. 128(2), 199–206 (2005)

    CrossRef  Google Scholar 

  64. C.S. Davis, Statistical Methods of the Analysis of Repeated Measurements (Springer, New York, 2002).

    CrossRef  MATH  Google Scholar 

  65. A. Petrie, C. Sabin, Medical Statistics at a Glance (Wiley-Blackwell, Chichester, UK, 2009).

    MATH  Google Scholar 

  66. A.G. Ushenko, O.V. Dubolazov, V.A. Ushenko, O.Y. Novakovskaya, O.V. Olar, Fourier polarimetry of human skin in the tasks of differentiation of benign and malignant formations. Appl. Opt. 55(12), B56–B60 (2016)

    CrossRef  Google Scholar 

  67. Y.A. Ushenko, V.T. Bachynsky, O.Y. Vanchulyak, A.V. Dubolazov, M.S. Garazdyuk, V.A. Ushenko, Jones-matrix mapping of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes. Appl. Opt. 55(12), B113-B119 (2016)

    Google Scholar 

  68. A.V. Dubolazov, N.V. Pashkovskaya, Y.A. Ushenko, Y.F. Marchuk, V.A. Ushenko, O.Y. Novakovskaya, Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology. Appl. Opt. 55(12), B85–B90 (2016)

    CrossRef  Google Scholar 

  69. M.S. Garazdyuk, V.T. Bachinskyi, O.Y. Vanchulyak, A.G. Ushenko, O.V. Dubolazov, M.P. Gorsky, Polarization-phase images of liquor polycrystalline films in determining time of death. Appl. Opt. 55(12), B67-B71 (2016)

    Google Scholar 

  70. A.V. Dubolazov, O.V. Olar, L.Y. Pidkamin, A.D. Arkhelyuk, A.V. Motrich, V.T. Bachinskiy, O.V. Pavliukovich, N. Pavliukovich, Differential components of Muller matrix partially depolarizing biological tissues in the diagnosis of pathological and necrotic changes. Proc. SPIE 11087, 1108713 (2019)

    Google Scholar 

  71. O. Ushenko, V. Zhytaryuk, V. Dvorjak, I.V. Martsenyak, O. Dubolazov, B.G. Bodnar, O.Y. Vanchulyak, S. Foglinskiy, Multifunctional polarization mapping system of networks of biological crystals in the diagnostics of pathological and necrotic changes of human organs. Proc. SPIE 11087, 110870S (2019)

    Google Scholar 

  72. O. Pavlyukovich, N. Pavlyukovich, Y. Ushenko, O. Galochkin, M. Sakhnovskiy, M. Kovalchuk, A. Dovgun, S. Golub, O. Dubolazov, Fractal analysis of patterns for birefringence biological tissues in the diagnostics of pathological and necrotic states. Proc. SPIE 11105, 1110518 (2019)

    Google Scholar 

  73. Y.Y. Tomka, Wavelet analysis of biological tissue's Mueller-matrix images. Proc. SPIE 7008, 700823 (2008)

    Google Scholar 

  74. O.V. Dubolazov, Y.O. Ushenko, Y.Y. Tomka, O.G. Pridiy, A.V. Motrich, I.Z. Misevitch, V.V. Istratiy, Wavelet analysis for Mueller matrix images of biological crystal networks. Semicond. Phys. Quantum Electron. Optoelectron. 12(4), 391–398 (2009)

    Google Scholar 

  75. A.O. Karachevtsev, Fourier Stokes-polarimetry of biological layers polycrystalline networks. Semicond. Phys. Quantum Electron. Optoelectron. 15(3), 252–268 (2012)

    CrossRef  Google Scholar 

  76. O. Angelsky, A. Ushenko, Y. Ushenko, Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state. J. Biomed. Opt. 10(6), 060502 (2005)

    Google Scholar 

  77. Y. Ushenko, Complex degree of mutual polarization of Biotissue’s Speckle-images. Ukr. J. Phys Opt. 6(3), 104–113 (2005)

    Google Scholar 

  78. S.B. Yermolenko, C.Y. Zenkova, A.-P. Angelskiy, Polarization manifestations of correlation (intrinsic coherence) of optical fields. Appl. Opt. 47(32) (2008)

    Google Scholar 

  79. O.V. Angelsky, A.G. Ushenko, A.O. Angelskaya, Y.A. Ushenko, Correlation- and singular-optical approaches in diagnostics of polarization inhomogeneity of coherent opical fields from biological tissues. Ukr. J. Phys. Opt. 8(2), 106–123 (2007)

    Google Scholar 

  80. O.V. Angelsky, A.G. Ushenko, A.O. Angelskaya, Y.A. Ushenko, Polarization correlometry of polarization singularities of biological tissues object fields. Proc. SPIE 6616, 1–9 (2007)

    Google Scholar 

  81. Y.O. Ushenko, Y.Y. Tomka, O.I. Telenga, I.Z. Misevitch, V.V. Istratiy, Complex degree of mutual anisotropy of biological liquid crystals nets. Opt. Eng. 50, 039001 (2011)

    Google Scholar 

  82. Y.A. Ushenko, O.I. Telenga, A.P. Peresunko, O.K. Numan, New parameter for describing and analyzing the optical-anisotropic properties of biological tissues. J. Innov. Opt. Health Sci. 4(4), 463–475 (2011)

    CrossRef  Google Scholar 

  83. A.V. Dubolazov, O.Y. Telenha, V.A. Ushenko, M.I. Sydor, Characteristic values of Mueller-matrixes images of biological liquid crystals net for diagnostics of human tissues anisotropy. Proc. SPIE 8338, 83380Z (2011)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meglinski, I. et al. (2021). Methods and Means of Polarization Correlation of Fields of Laser Radiation Scattered by Biological Tissues. In: Shedding the Polarized Light on Biological Tissues. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4047-4_1

Download citation