Skip to main content

Biosensors: A Tool for Environmental Monitoring and Analysis

  • Chapter
  • First Online:
Advances in Environmental Biotechnology

Abstract

Biosensor is an analytical tool that consists an immobilized biological component to react with analyte; subsequently, the produced biological signal is converted to a readable signal with the help of a transducer. Biosensors are of great importance because of their several advantages over the conventional techniques in the field of analysis. Biosensors are researched and applied in several diverse areas, such as health, medicine, defense, agriculture and food safety, industry and environmental monitoring, etc. Present chapter provides an overview of application of biosensors in the field of environmental analysis and monitoring. Strategies developed involving different biocomponents, bioassay principle, transducers, and their application for different groups of analytes; for example, pesticides, BOD, heavy metals, and other categories of environmental pollutants have been discoursed. Future trends and commercial aspects of environmental biosensor have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn-Yoon S, DeCory TR, Baeumner AJ, Durst RA (2003) Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Anal Chem 75(10):2256–2261

    Article  CAS  Google Scholar 

  • Alkorta I, Epelde L, Mijangos I, Amezaga I, Garbisu C (2006) Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. Rev Environ Health 21(2):139–152

    Article  CAS  Google Scholar 

  • Andreou VG, Clonis YD (2002a) A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol-gel entrapped bromocresol purple for in-field use. Biosens Bioelectron 17:61–69

    Article  CAS  Google Scholar 

  • Andreou VG, Clonis YD (2002b) Novel fiber-optic biosensor based on immobilized glutathione S-trans-ferase and sol-gel entrapped Bromocresol Green for the determination of Atrazine. Anal Chim Acta 460(2):151–161

    Article  CAS  Google Scholar 

  • Andres RT, Narayanaswamy R (1997) Fibre-optic pesticide biosensor based on covalently immobilized acetylcholinesterase and thymol blue. Talanta 44:1335–1352

    Article  CAS  Google Scholar 

  • Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19(19–20):2015–2028

    Article  CAS  Google Scholar 

  • Bastiaens L, Springael D, Dejonghe W, Wattiau P, Verachtert H, Diels L (2001) A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes. Res. Res Microbiol 10:849–859

    Article  Google Scholar 

  • Berezhetskyy AL, Sosovska OF, Durrieu C, Chovelon JM, Dzyadevych SV, Tran-Minh C (2008) Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. ITBM-RBM 29(2–3):136–140

    Google Scholar 

  • Bontidean I, Mortari A, Leth S et al (2004) Biosensors for detection of mercury in contaminated soils. Environ Pollut 131(2):255–262

    Article  CAS  Google Scholar 

  • Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  Google Scholar 

  • Bulich AA, Isenberg DL (1981) Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans 20:29–33

    CAS  Google Scholar 

  • Campanella L, Lelo D, Martini E, Tomassetti M (2007) Organophosphorus and carbamate pesticide analysis using an inhibition tyrosinase organic phase enzyme sensor; Comparison by Butyrylcholinesterase + choline oxidase Opee and application to natural waters. Anal Chim Acta 587(1):22–32

    Article  CAS  Google Scholar 

  • Castillo G, Spinella K, Poturnayova A, Snejdarkova M, Mosiello L, Hainik T (2015) Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 52:9–18

    Article  CAS  Google Scholar 

  • Chang IH, Tulock JJ, Liu J, Kim WS, Canon DM, Lu Y, Paul WB, Jonathan VS, Donald MC (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a Nanocapillary interconnected microfluidic device. Environ Sci Technol 39:3756–3761

    Article  CAS  Google Scholar 

  • Chee GJ, Nomura Y, Ikebukuro K, Karube I (2000) Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens Bioelectron 15(7–8):371–376

    Article  CAS  Google Scholar 

  • Chen H, Mousty C, Cosnier S, Silveira C, Moura JJG, Almeida MG (2007) Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem Commun 9:2240–2245

    Article  CAS  Google Scholar 

  • Cho JH, Lee da Y, Lim WK, Shin HJ (2014) A recombinant Escherichia coli biosensor for detecting polycyclic aromatic hydrocarbons in gas and aqueous phases. Prep Biochem Biotechnol 44(8):849–860

    Google Scholar 

  • Choi JW, Kim YK, Lee IH, Min J, Lee WH (2001) Optical organophosphorus biosensor consisting of acetylcholinesterase/viologen hetero Langmuir-Blodgett film. Biosens Bioelectron 16:937–943

    Article  CAS  Google Scholar 

  • Chua AL, Yean CY, Ravichandran M, Lim B, Lalitha P (2011) A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens Bioelectron 26:3825–3831

    Article  CAS  Google Scholar 

  • Cosnier S, Innocent C, Jouanneau Y (1994) Amperometric detection of nitrate via a nitrate reductase immobilized and electrically wired at the electrode surface. Anal Chem 66(19):3198–3201

    Article  CAS  Google Scholar 

  • Dai YJ, Lin L, Li PW, Chen X, Wang XR, Wong KY (2004) Comparison of BOD optical fiber biosensors based on different microorganisms immobilized in ormosil matrices. Int J Environ Anal Chem 84:607–617

    Article  CAS  Google Scholar 

  • Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151

    CAS  Google Scholar 

  • Dhall P, Kumar A, Joshi A, Saxsena TK, Manoharan A, Makhijani SD, Kumar R (2008) Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor. Sens Act B 133(2):478–483

    Article  CAS  Google Scholar 

  • Domınguez RO, Alonso MLA, Martinez MJA (2004) Optimisation procedure for the inhibitive determination of chromium (III) using an amperometric tyrosinase biosensor. Anal Chim Acta 521(2):215–221

    Article  CAS  Google Scholar 

  • Du D, Chen W, Zhang W, Liu D, Li H, Lin Y (2010) Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube. Au nano-composite for enhanced detection of methyl parathion. Biosens Bioelectron 25(6):1370–1375

    Article  CAS  Google Scholar 

  • Evtugyn GA, Stoikov II, Budnikov HC, Stoikova EE (2003) A cholinesterase sensor based on a graphite electrode modified with 1,3-disubstituted calixarenes. J Anal Chem 58:1151–1156

    Article  Google Scholar 

  • Gavlasova P, Kuncova G, Kochankova L, Mackova M (2008) Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int Biodeterior Biodegrad 62:304–312

    Article  CAS  Google Scholar 

  • Han S, Zhu M, Yuan Z, Li X (2001) A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury–glutathione complex. Biosens Bioelectron 16:9–16

    Article  CAS  Google Scholar 

  • Hara OT, Seddon B, McClean S, Dempsey E (2015) TOXOR: design and application of an electrochemical toxicity biosensor for environmental monitoring. Electroanalysis 27:58–66

    Article  CAS  Google Scholar 

  • Hayat A, Marty JL (2014) Aptamer based electrochemical sensors for emerging environmental pollutants. Front Chem. doi:10.3389/fchem.2014.00041

    Google Scholar 

  • Hsieh MC, Chung YC (2014) Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor. Environ Technol 35(17):2204–2211

    Article  CAS  Google Scholar 

  • Jain S, Chattopadhyay S, Jackeray R, Abid CKVZ, Kohli GS, Singh H (2012) Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosens Bioelectron 31:37–43

    Article  CAS  Google Scholar 

  • Jia J, Tang M, Chen X, Li Q, Don S (2003) Co-immobilized microbial biosensor for BOD estimation based on sol/gel derived composite material. Biosens Bioelectron 18:1023–1029

    Article  CAS  Google Scholar 

  • Joung CK, KimHN LMC, Jeon TJ, Kim HY, Kim YR (2013) A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens Bioelectron 44:210–215

    Article  CAS  Google Scholar 

  • Kara S, Keskinler B, Erhan E (2009) A novel microbial BOD biosensor developed by the immobilization of P. Syringae in micro-cellular polymers. J Chem Technol Biotechnol 84:511–518

    Article  CAS  Google Scholar 

  • Kaur H, Kumar S, Verma N (2014) Enzyme-based colorimetric and potentiometric biosensor for detecting Pb (II) ions in milk. Braz Arch Biol Technol 57(4):613–619

    Article  CAS  Google Scholar 

  • Kim SJ, Gobi KV, Iwasaka H, Tanaka H, Miura N (2007) Novel miniature SPR immunosensor equipped with all-in-one multichannel sensor chip for detecting low-molecular-weight analytes. Biosens Bioelectron 23(5):701–707

    Article  CAS  Google Scholar 

  • KretzerJW LR, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 73:1992–2000

    Article  CAS  Google Scholar 

  • Kumlanghan A, Kanatharana P, Asawatreratanakul P, Mattiasson B, Thavarungkul P (2008) Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme Microb Technol 42:483–491

    Article  CAS  Google Scholar 

  • Kwok NY, Dong S, Loa W, Wonga KY (2005) An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD). Sensors Actuators B 110:289–298

    Article  CAS  Google Scholar 

  • Lee SM, Lee WY (2002) Determination of heavy metal ions using conductometric biosensor based on sol-gel immobilized urease. Bull Kor Chem Soc 23(8):1169–1172

    Article  CAS  Google Scholar 

  • Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25(7):1566–1570

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2004) Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. Biotechnol Bioeng 85(7):706–713

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Chen W, Mulchandani A (2006) Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface expressed organophosphorus hydrolase modified clark oxygen electrode. Sensors 6(4):466–472

    Article  CAS  Google Scholar 

  • Liao VHC, Chien MT, Tseng YY (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ Pollut 142(1):17–23

    Article  CAS  Google Scholar 

  • Liu Z, Wang Y, Kounaves SP, Brush EJ (1993) Determination of organonitriles using enzyme-based selectivity mechanisms. 1. An ammonia gas sensing electrode-based sensor for benzonitrile. Anal Chem 65(21):3134–3136

    Article  CAS  Google Scholar 

  • Liu B, Yang YH, Wu ZY, Wang H, Shen GL, Yu RQ (2005) A potentiometric acetylcholinesterase biosensor based on plasma-polymerized film. Sensors Actuators B 104(2):186–190

    Article  CAS  Google Scholar 

  • Long F, Gao C, Shi HC, He M, Zhu AN, Klibanov AM, GuAZ (2011) Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosens Bioelectron 26:4018–4023

    Article  CAS  Google Scholar 

  • Luo Y, Nartker S, Miller H, Hochhalter D, Wiederoder M, Wiederoder S, Setterington E, Drzal LT, Alocilja EC (2010) Surface functionalization of electrospun nanofibers for detecting E. coli O157: H7 and BVDV cells in a direct-charge transfer biosensor. Biosens Bioelectron 26:1612–1617

    Article  CAS  Google Scholar 

  • Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    Article  CAS  Google Scholar 

  • Madasamy T, Pandiaraj M, Balamurugan M, Bhargava K, Sethy NK, Karunakaran C (2014) Copper, zinc superoxide dismutase and nitrate reductase coimmobilizedbienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 52:209–215

    Article  CAS  Google Scholar 

  • Malitesta C, Guascito MR (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens Bioelectron 20:1643–1647

    Article  CAS  Google Scholar 

  • Mallat E, Barcelo D, Barzen C, Gauglitz G, Abuknesha R (2001) Immunosensors for pesticide determination in natural waters. Trends Anal Chem 20(3):3124–3132

    Article  Google Scholar 

  • Mauriz E, Calle A, Montoya A, Lechuga LM (2006) Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 69(2):359–364

    Article  CAS  Google Scholar 

  • Mohammadi H, Rhazi E, Amine M, Brett AMO, Brett CMA (2002) Determination of mercury(II) by invertase enzyme inhibition coupled with batch injection analysis. Analyst 127:1088–1093

    Article  CAS  Google Scholar 

  • Mongra AC, Kaur A (2012) Biosensors activities around the globe. Digest J Nanomat Biostruct 7(4):1457–1471

    Google Scholar 

  • Mulchandani A, Pan ST, Chen W (1999) Fiber-optic enzyme biosensor for direct determination of organo- phosphate nerve agents. Biotechnol Prog 15(1):130–134

    Article  CAS  Google Scholar 

  • Mulchandani P, Carlos MH, Lei Y, Chen W, Mulchandani A (2005) Amperometric microbial biosensor for p-nitrophenol using Morexalla sp.-modified carbon paste electrode. Anal Biosens Bioelectron 21(3):523–527

    Article  CAS  Google Scholar 

  • Nader PA, Vives SS, Mottola HA (1990) Studies with a sulfite oxidase-modified carbon paste electrode for detection/determination of sulfite ion and sulfur dioxide (g) in continuous flow systems. J Electroanal Chem 284:323–333

    Article  Google Scholar 

  • Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, Gotoh M, Karube I (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72(1):210–216

    Article  CAS  Google Scholar 

  • Navratilova I, Skladal P (2004) The immunosensors for measurement of 2, 4-Dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 62(1):11–18

    Article  CAS  Google Scholar 

  • Neufeld T, Schwartz-Mittelmann A, Biran D, Ron EZ, Rishpon J (2003) Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal Chem 75(3):580–585

    Article  CAS  Google Scholar 

  • Nowicka AM, Kowalczyk A, Stojek Z, Hepel M (2010) Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys Chem 146(1):42–53

    Article  CAS  Google Scholar 

  • Okochi M, Mima K, Miyata M, Shinozaki Y, Haraguchi S, Fujisawa M, Kaneko M, Masukata T, Matsunaga T (2004) Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant. Biotechnol Bioeng 87(7):905–911

    Article  CAS  Google Scholar 

  • Ooi L, Yook-Heng L, Ahmad A (2015) Toxicity biosensor for sodium dodecyl sulfate using immobilized green fluorescent protein expressing Escherichia coli. J Sensors. doi.org/10.1155/2015/809065

    Google Scholar 

  • Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloid Surf B 77(1):69–74

    Article  CAS  Google Scholar 

  • Purohit HJ (2003) Biosensors as molecular tools for use in bioremediation. J Clean Prod 11(3):293–301

    Article  Google Scholar 

  • Quan D, Shin W (2010) A nitrite biosensor based on co-immobilization of nitrite reductase and viologen-modified chitosan on a glassy carbon electrode. Sensors (Basel) 10(6):6241–6256

    Article  CAS  Google Scholar 

  • Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15(12):500–506

    Article  CAS  Google Scholar 

  • Rastogi S, Kumar A, Mehra NK, Makhijani SD, Manoharan A, Gangal V, Kumar R (2003) Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters. Biosens Bioelectron 18(1):23–29

    Article  CAS  Google Scholar 

  • Reshetilov A, Arlyapov V, Alferov V, Reshetilova T (2013) BOD biosensors: application of novel technologies and prospects for the development. In: Toonika R (ed) State of the art in biosensors-environmental and medical applications. Intech, Rijeka, pp 57–77

    Google Scholar 

  • Rodriguez BB, Bolbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron 19(10):1157–1167

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Maria-Pilar M, Maria J, Alda L, Barcelo D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76(4):723–752

    Article  CAS  Google Scholar 

  • Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568:222–231

    Article  CAS  Google Scholar 

  • Rogers KR, Gerlach CL (1999) Update on environmental biosensors. Environ Sci Technol 33(23):500–506

    Google Scholar 

  • Saadati S, Salimi A, Hallaj R, Rostami R (2014) Direct electron transfer and electrocatalytic properties of immobilized hemoglobin onto glassy carbon electrode modified with ionic-liquid/titanium-nitride nanoparticles: application to nitrite detection. Sensors Actuators B-Chem 191:625–633

    Article  CAS  Google Scholar 

  • Salgado AM, Silva LM, Melo AF (2011) Biosensor for environmental applications. In: Somerset V (ed) Environmental biosensors. Intech, Rijeka, pp 3–16

    Google Scholar 

  • Sassolas A, Prieto-Simon B, Jean-Louis M (2012) Biosensors for pesticide detection: new trends. Am J Anal Chem 3:210–232

    Article  CAS  Google Scholar 

  • Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide diuron. Biosens Bioelectron 26(10):4209–4212

    Article  CAS  Google Scholar 

  • Soldatkin AP, Volotovsky V, Elskaya AV, Jaffrezic-Renault N, Martelet C (2000) Improvement of urease based biosensor characteristics using additional layers of charged polymers. Anal Chim Acta 403:25–29

    Article  CAS  Google Scholar 

  • Sorensen SJ, Burmolle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17:11–16

    Article  CAS  Google Scholar 

  • Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546(2–3):391–394

    Article  CAS  Google Scholar 

  • Stoytcheva M, Sharkova V (2002) Kinetics of the inhibition of immobilized acetyl cholinesterase with Hg (II). Electroanal 14(14):1007–1010

    Article  CAS  Google Scholar 

  • Stoytcheva M, Zlatev R, Velkova Z, Valdez B, Ovalle M, Petkov L (2009) Hybrid electrochemical biosensor for organophosphorus pesticides quantification Margarita. Electrochim Acta 54:1721–1727

    Article  CAS  Google Scholar 

  • Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG (2013) Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of staphylococcus aureus in milk. Biosens Bioelectron 43:432–439

    Article  CAS  Google Scholar 

  • Tag K, Riedel K, Bauer HJ, Hanke G, Baronian KHR, Kunze G (2007) Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA). Sensors Actuators B 122(2):403–409

    Article  CAS  Google Scholar 

  • Tan TC, Wu C (1999) BOD sensors using multi-species living or thermally killed cells of a BODSEED microbial culture. Sensors Actuators B 54:252–260

    Article  CAS  Google Scholar 

  • Taranova L, Semenchuk I, Manolov T, Iliasov P, Reshetilov A (2002) Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants. Biosens Bioelectron 17(8):635–640

    Article  CAS  Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13(9):931–938

    Article  CAS  Google Scholar 

  • Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 37:24–29

    Article  CAS  Google Scholar 

  • Tchounwou PB, YedjouCG PAK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    Google Scholar 

  • Tecon R, Wells M, van der Meer JR (2006) A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environ Microbiol 4:697–708

    Article  CAS  Google Scholar 

  • Tekaya N, Saiapina O, Quada HB, Lagarde F, Namour F, Ouada HB, Jaffrezic-Renault N (2014) Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in Arthrospira platensis. J Environ Prot 5:441–453

    Article  CAS  Google Scholar 

  • Tencaliec AM, Laschi S, Magearu V, Mascini M (2006) A comparison study between a disposable electrochemical DNA biosensor and a Vibrio fischeri-based luminescent sensor for the detection of toxicants in water samples. Talanta 69(2):365–369

    Article  CAS  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  CAS  Google Scholar 

  • Tsai HC, Doong RA (2005) Simultaneous determination of Ph, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosens Bioelectron 20(9):1796–1804

    Article  CAS  Google Scholar 

  • Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem. doi:10.4061/2011/343125

  • Unge A, Tombolini R, Mølbak L, Jansson JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65:813–821

    CAS  Google Scholar 

  • Vashist SK, Venkatesh AG, Mitsakakis K, Czilwik G, Roth G, Stetten F, Zengerle R (2012) Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. Bio Nano Sci 2:115–126

    Google Scholar 

  • Verma N, Kumar S, Kaur H (2010) Fiber optic biosensor for the detection of Cd in milk. J Biosens Bioelectron 1:102. doi:10.4172/2155–6210.1000102

  • Verma N, Kumar S, Kaur H (2011) Whole cell based disposable biosensor for Cadmium detection in milk. Adv Appl Sci Res 2(6):354–363

    CAS  Google Scholar 

  • Werlen C, Jaspers MCM, van der Meer JR (2004) Measurement of biologically available naphthalene in gas, and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70(1):43–51

    Article  CAS  Google Scholar 

  • Wong FC, Ahmad M, Heng LY, Peng LB (2006) An optical biosensor for dichlovos using stacked sol-gel films containing acetylcholinesterase and a lipophilic chromoionophore. Talanta 69(4):888–893

    Article  CAS  Google Scholar 

  • Wong ELS, Wong E, Chow GJJ (2007) The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem Commun 9(4):845–849

    Article  CAS  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial biosensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  CAS  Google Scholar 

  • Yan Z, Zhou L, Zhao Y, Wang J, Huang L, Hu K, Liu H, Wang H, Guo Z, Song Y, Huang H, Yang R (2006) Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors Actuators B Chem 119:656–663

    Article  CAS  Google Scholar 

  • Zacco E, Galve R, Marco MP, Alegret S, Pividori MI (2007) Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms. Biosens Bioelectron 22(8):1707–1715

    Article  CAS  Google Scholar 

  • Zhang Y, Zhuang H-S (2010) Amperometric immunosensor based on layer-by-layer assembly of Thiourea and nano-gold particles on gold electrode for determination of naphthalene. Chin J Anal Chem 38(2):153–157

    Article  CAS  Google Scholar 

  • Zhou Y, Tang L, Zeng G, Zhang Y, Li Z, Liu Y, Chen J, Yang G, Zhou L, Zhang S (2014) Simultaneous determination of hydroquinone and catechol in compost bioremediation using a tyrosinase biosensor and artificial neural networks. Anal Methods 6:2371–2378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar Suryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Suryan, S.K. (2017). Biosensors: A Tool for Environmental Monitoring and Analysis. In: Kumar, R., Sharma, A., Ahluwalia, S. (eds) Advances in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4041-2_16

Download citation

Publish with us

Policies and ethics