Skip to main content

Comparison of Artificial Intelligence–Based Pathological Brain Detection Systems

  • Chapter
  • First Online:
Pathological Brain Detection

Part of the book series: Brain Informatics and Health ((BIH))

Abstract

In this chapter, three data sets for single-slice pathological brain detection (PBD), along with their download URLs, are given. All the data sets can be downloaded from The Whole Brain Atlas from the Harvard Medical School. The inclusion criteria of three commonly used data sets are introduced. The limitation of using didactic images is explained. In the field of pattern recognition, a training set is necessary, where data are labelled using known categories. The validation set is important to optimize hyper-parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patnaik LM, Chaplot S, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92. https://doi.org/10.1016/j.bspc.2006.05.002

    Article  Google Scholar 

  2. El-Dahshan ESA, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process 20(2):433–441. https://doi.org/10.1016/j.dsp.2009.07.002

    Article  Google Scholar 

  3. Wu L (2011) A hybrid method for MRI brain image classification. Expert Syst Appl 38(8):10049–10053

    Article  Google Scholar 

  4. Wu L (2012) An MR brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagnet Res 130:369–388

    Article  Google Scholar 

  5. Saritha M, Joseph KP, Mathew AT (2013) Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recogn Lett 34(16):2151–2156. https://doi.org/10.1016/j.patrec.2013.08.017

    Article  Google Scholar 

  6. Das S, Chowdhury M, Kundu MK (2013) Brain MR image classification using multiscale geometric analysis of Ripplet. Prog Electromagnet Res-Pier 137:1–17. https://doi.org/10.2528/pier13010105

  7. Yang J (2015) Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813. https://doi.org/10.3390/e17041795

    Article  Google Scholar 

  8. Zhou X, Xu W, Sun P (2015) Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. In: Ortuño F, Rojas I (eds) Bioinformatics and biomedical engineering, Granada, Spain lecture notes in computer science. Springer International Publishing, pp 201–209. https://doi.org/10.1007/978-3-319-16483-0_20

  9. Feng C (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153–164. https://doi.org/10.1002/ima.22132

    Article  MathSciNet  Google Scholar 

  10. Phillips P, Dong Z, Yang J (2015) Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog Electromagnet Res 152:41–58. https://doi.org/10.2528/PIER15040602

    Article  Google Scholar 

  11. Sun P (2015) Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Med Mater Eng 26(s1):1283–1290. https://doi.org/10.2528/PIER13121310

    Article  Google Scholar 

  12. Liu A (2015) Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Inform 5(7):1395–1403. https://doi.org/10.1166/jmihi.2015.1542

    Article  Google Scholar 

  13. Liu G (2015) Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 4(1), Article ID: 716

    Google Scholar 

  14. Yang X, Sun P, Dong Z, Liu A, Yuan T-F (2015) Pathological brain detection by a novel image feature—fractional fourier entropy. Entropy 17(12):8278–8296. https://doi.org/10.3390/e17127877

    Article  Google Scholar 

  15. Nayak DR, Dash R, Majhi B (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197. https://doi.org/10.1016/j.neucom.2015.11.034

    Article  Google Scholar 

  16. Atangana A (2016) Application of stationary wavelet entropy in pathological brain detection. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-3401-7

    Article  Google Scholar 

  17. Zhou X-X, Yang J-F, Sheng H, Wei L, Yan J, Sun P (2016) Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection. Simulation 92(9):827–837. https://doi.org/10.1177/0037549716629227

    Article  Google Scholar 

  18. Yang M (2016) Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection. Appl Sci 6(6), Article ID: 169

    Google Scholar 

  19. Yang JF, Sun P (2016) Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng Biomed Tech 61(4):431–441. https://doi.org/10.1515/bmt-2015-0152

  20. Sun Y (2016) A multilayer perceptron based smart pathological brain detection system by fractional fourier entropy. J Med Syst 40(7), Article ID: 173. https://doi.org/10.1007/s10916-016-0525-2

  21. Chen X-Q (2016) Fractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand method. IEEE Access 4:5937–5947. https://doi.org/10.1109/ACCESS.2016.2611530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, SH., Zhang, YD., Dong, Z., Phillips, P. (2018). Comparison of Artificial Intelligence–Based Pathological Brain Detection Systems. In: Pathological Brain Detection. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4026-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4026-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4025-2

  • Online ISBN: 978-981-10-4026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics