Skip to main content

Male Infertility: An Epigenetic Perspective

  • Chapter
  • First Online:
  • 1393 Accesses

Abstract

Besides known genetic and environmental factors, research over the last two decades has shed light on several epigenetic mechanisms and their association with male infertility. The male germ line undergoes extensive epigenetic remodeling throughout fetal to adult life and is thus susceptible to environmental factors that can affect fertility. During fetal life, the primordial germ cells undergo removal of epigenetic marks (demethylation) followed by re-establishment of these marks according to the sex of the fetus, at the time of gonadal differentiation. Extensive programming of the epigenome occurs during the various phases of spermatogenesis, i.e., mitosis, meiosis, and spermiogenesis, leading to haploid-condensed spermatozoa with protamines as the major nucleoproteins. Shortly after fertilization, the sperm chromatin decondenses and the protamines are replaced by histones. The male pronucleus undergoes active demethylation. One such epigenetic phenomenon, genomic imprinting resulting in monoallelic expression of genes depending on the parent of origin, is involved in early embryogenesis. Aberrant methylation pattern of imprinting control region (ICR) of imprinted genes in the spermatozoa is associated with altered sperm morphology, count, and motility. This chapter provides a comprehensive overview of the epigenetic changes affecting spermatogenesis and male fertility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ankolkar M, Patil A, Warke H, Salvi V, Kedia Mokashi N, Pathak S, Balasinor NH (2012) Methylation analysis of idiopathic recurrent spontaneous miscarriage cases reveals aberrant imprinting at H19 ICR in normozoospermic individuals. Fertil Steril 98:1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Memon MA, Uzumcu M, Skinner MK (2006) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27(6):868–879

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT (2005) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26:741–748

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Hannon GJ (2008) Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol 73:283–290

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747

    Article  CAS  PubMed  Google Scholar 

  • Arnaud P (2010) Genomic imprinting in germ cells: imprints are under control. Reproduction 140:411–423

    Article  CAS  PubMed  Google Scholar 

  • Aston KI, Punj V, Liu L, Carrell DT (2012) Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril 97:285–292

    Article  CAS  PubMed  Google Scholar 

  • Bak CW, Yoon TK, Choi Y (2011) Functions of PIWI proteins in spermatogenesis. Clin Exp Reprod Med 38(2):61–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasinor N, Gill-Sharma MK, Parte P, D’Souza S, Kedia N, Juneja HS (2002) Effect of paternal administration of an antiestrogen, tamoxifen on embryo development in rats. Mol Cell Endocrinol 190(1–2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Barbosa TC, Ingerslev LR, Alm PS et al (2016) High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5(3):184–197. doi:10.1016/j.molmet.2015.12.002

    Article  CAS  Google Scholar 

  • Ben-Haim MS, Moshitch-Moshkovitz S, Rechavi G (2015) FTO: linking m6A demethylation to adipogenesis. Cell Res 25(1):3–4

    Article  CAS  PubMed  Google Scholar 

  • Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C (2006) Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev 73:279–287

    Article  CAS  PubMed  Google Scholar 

  • Boissonnas CC, Abdalaoui HE, Haelewyn V, Fauque P, Dupont JM, Gut I, Vaiman D, Jouannet P, Tost J, Jammes H (2010) Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet 18(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Boissonnas CC, Jouannet P, Jammes H (2013) Epigenetic disorders and male subfertility. Fertil Steril 99:624–631

    Article  CAS  PubMed  Google Scholar 

  • Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    Article  PubMed  CAS  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    Article  CAS  PubMed  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  CAS  PubMed  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604–610

    CAS  PubMed  Google Scholar 

  • Comazzetto S, Di Giacomo M, Rasmussen KD et al (2014) Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet 10(10):e1004597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Congras A, Yerle-Bouissou M, Pinton A, Vignoles F, Liaubet L, Ferchaud S, Acloque H (2014) Sperm DNA methylation analysis in swine reveals conserved and species-specific methylation patterns and highlights an altered methylation at the GNAS locus in infertile boars. Biol Reprod 91(6):137

    Article  PubMed  CAS  Google Scholar 

  • Davis TL, Yang GJ, McCarrey JR, Bartolomei MS (2000) The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9:2885–2894

    Article  CAS  PubMed  Google Scholar 

  • de Kretser DM, Kerr JB (1994) The cytology of the testis. In: Knobil E, Neill JD (eds) Physiology & reproduction. Raven Press, New York, pp 1177–1290

    Google Scholar 

  • Deng W, Lin H (2002) Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830

    Article  CAS  PubMed  Google Scholar 

  • Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 71:3971–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerksen T, Trasler JM (1996) Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol Reprod 55:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Wang Y, Zou Z, Chen L, Shen C, Xu S, Zhang J, Zhao F, Ge S, Gao Q, Hu H, Song M, Wang W (2016) Abnormal methylation of imprinted genes and cigarette smoking: assessment of their association with the risk of male infertility. Reprod Sci. pii: 1933719116650755

    Google Scholar 

  • Doshi T, D’souza C, Vanage G (2013) Aberrant DNA methylation at Igf2-H19 imprinting control region in spermatozoa upon neonatal exposure to bisphenol A and its association with post implantation loss. Mol Biol Rep 40(8):4747–4757

    Article  CAS  PubMed  Google Scholar 

  • Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH (2013) Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germcell associations and spermatogonial stem cells in mice. Biol Reprod 88(5):112

    Article  PubMed  PubMed Central  Google Scholar 

  • El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, Schorsch M, Haaf T (2011) Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev 5:60–69

    Article  CAS  PubMed  Google Scholar 

  • Fadloun A, Le Gras S, Jost B, Ziegler-Birling C, Takahashi H, Gorab E, Carninci P, Torres-Padilla ME (2013) Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20:7

    Article  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  CAS  PubMed  Google Scholar 

  • Foster CT, Dovey OM, Lezina L, Luo JL, Gant TW, Barlev N, Bradley A, Cowley SM (2010) Lysine specific demethylase 1 (LSD1) regulates the embryonic 2 transcriptome and CoREST stability. Mol Cell Biol 30(20):4851–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  • Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K, Stewart AF (2009) The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2(5)

    Google Scholar 

  • Gou L-T, Dai P, Liu MF (2014) Small noncoding RNAs and male infertility. WIREs RNA 5(6):733–745. doi:10.1002/wrna.1252

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Savenkova M, Haque MM, Nilsson E, Skinner MK (2013) Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 8(3):e59922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  CAS  PubMed  Google Scholar 

  • Hamatani T (2012) Human spermatozoal RNAs. Fertil Steril 97:275–281

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT (2010) Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril 94:1728–1733

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K, Arnaud P (2009) Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum Mol Genet 18:3375–3383

    Article  CAS  PubMed  Google Scholar 

  • Ho SM, Cheong A, Lam HM, Hu WY, Shi GB, Zhu X, Chen J, Zhang X, Medvedovic M, Leung YK, Prins GS (2015) Exposure of human prostaspheres to bisphenol a epigenetically regulates SNORD family noncoding RNAs via histone modification. Endocrinology 156(11):3984–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ (2007) Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2:e1289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichiyanagi T, Ichiyanagi K, Miyake M, Sasaki H (2013) Accumulation and loss of asymmetric non CpG methylation during male germ cell development. Nucleic Acid Res 41:738–745

    Article  CAS  PubMed  Google Scholar 

  • Ishizu H, Siomi H, Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26:2361–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamori N, Zhao M, Meistrich ML, Matzuk MM (2011) The testis-enriched histone demethylase, KDM4D, regulates methylation of histone H3 lysine 9 during spermatogenesis in the mouse but is dispensable for fertility. Biol Reprod 84(6):1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins TG, Carrell DT (2012) The sperm epigenome and potential implications for the developing embryo. Reproduction 143:727–734

    Article  CAS  PubMed  Google Scholar 

  • Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, Cox KJ, Stanford JB, Porucznik CA, Carrell DT (2016) Decreased fecundity and sperm DNA methylation patterns. Fertil Steril 105:51–57

    Article  CAS  PubMed  Google Scholar 

  • Johnson GD, Mackie P, Jodar M, Moskovtsev S, Krawetz SA (2015) Chromatin and extracellular vesicle associated sperm RNAs. Nucleic Acids Res 43:6847–6859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994):900–903

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M, Sasaki H (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16(19):2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M (2012) Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One 7:e44542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedia N, Gill-Sharma MK, Parte P, Juneja HS, Balasinor N (2004) Effect of paternal tamoxifen on the expression of insulin-like growth factor 2 and insulin-like growth factor type 1 receptor in the post-implantation rat embryos. Mol Reprod Dev 69:22–30

    Article  CAS  PubMed  Google Scholar 

  • Kedia N, Kadam L, Dumasia K, Balasinor NH (2016) Possible role of paternal aberrant imprinting in placental development: a study in tamoxifen treatment rat model. J Clin Epigenetics 2:1

    Google Scholar 

  • Kedia-Mokashi N, Kadam L, Ankolkar M, Dumasia K, Balasinor NH (2013) Aberrant methylation of multiple imprinted genes in embryos of tamoxifen-treated male rats. Reproduction 146:155–168

    Article  CAS  PubMed  Google Scholar 

  • Kelly TL, Li E, Trasler JM (2003) 5-Aza-2′-deoxycytidine induces alterations in murine spermatogenesis and pregnancy outcome. J Androl 24:822–830

    Article  CAS  PubMed  Google Scholar 

  • Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Paldi A, Jouannet P, Jeanpierre M (2000) Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet 9:2183–2187

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Miyauchi N, Hamada H, Hiura H, Chiba H, Okae H, Sato A, John RM, Arima T (2015) Epigenetic alterations in sperm associated with male infertility. Congenit Anom 55:133–144

    Article  Google Scholar 

  • Klungland A, Dahl JA (2014) Dynamic RNA modifications in disease. Curr Opin Genet Dev 26:47–52

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Sato A, Otsu E et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16:2542–2551

    Article  CAS  PubMed  Google Scholar 

  • Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP (2011) A survey of small RNAs in human sperm. Hum Reprod 26:3401–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W et al (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849

    Article  CAS  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22(7):908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, Paquet M, Suderman M, Hallett M, Kimmins S (2013) Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun 4:2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    Article  CAS  PubMed  Google Scholar 

  • Liu WM, Pang RTK, Chiu PCN, Wong BPC, Lao K, Lee KF, Yeung WSB (2012) Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 109:490–494

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Oyola MG, Zhou S et al (2015) Knockout of the histone demethylase Kdm3b decreases spermatogenesis and impairs male sexual behaviors. Int J Biol Sci 11(12):1447–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK (2012) Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod Toxicol 34(4):708–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning M, Lissens W, Liebaers I, Van Steirteghem A, Weidner W (2001) Imprinting analysis in spermatozoa prepared for intracytoplasmic sperm injection (ICSI). Int J Androl 24(2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, Sousa M (2008) Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod 14(2):67–74

    Article  CAS  PubMed  Google Scholar 

  • Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A, Sousa M (2010) Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril 94:585–594

    Article  CAS  PubMed  Google Scholar 

  • Marques-Pinto A, Carvalho D (2013) Human infertility: are endocrine disruptors to blame? Endocr Connect 2:15–29

    Article  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Minor A, Chow V, Ma S (2011) Aberrant DNA methylation at imprinted genes in testicular sperm retrieved from men with obstructive azoospermia and undergoing vasectomy reversal. Reproduction 141(6):749–757

    Article  CAS  PubMed  Google Scholar 

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed el SA, Song WH, Oh SA, Park YJ, You YA, Lee S, Choi JY, Kim YJ, Jo I, Pang MG (2010) The transgenerational impact of benzopyrene on murine male fertility. Hum Reprod 25(10):2427–2433

    Article  CAS  Google Scholar 

  • Nettersheim D, Heukamp LC, Fronhoffs F, Grewe MJ, Haas N, Waha A, Honecker F, Waha A, Kristiansen G, Schorle H (2013) Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLoS One 8:e82881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ni K, Dansranjavin, Rogenhofer N, Oeztuerk N, Deuker J, Bergmann M, Schuppe HC, Wagenlehner F, Weidner W, Steger K, Schagdarsurengin U (2016) TET enzymes are successively expressed during human spermatogenesis and their expression level is pivotal for male fertility. Hum Reprod 31:1411–1424

    Article  PubMed  Google Scholar 

  • Nottke A, Colaiácovo MP, Shi Y (2009) Developmental roles of the histone lysine demethylases. Development 136:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM (2007) Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 307:368–379

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450(7166):119–123

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Tateishi K, Zhang Y (2010) Histone demethylase JHDM2A is involved in male infertility and obesity. J Androl 31(1):75–78

    Article  CAS  PubMed  Google Scholar 

  • Pacheco SE, Houseman EA, Christensen BC, Marsit CJ, Kelsey KT, Sigman M, Boekelheide K (2011) Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6:e20280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak S, Kedia-Mokashi N, Saxena M, D’Souza R, Maitra A, Parte P, Gill-Sharma MK, Balasinor N (2009) Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil Steril 91(5 Suppl):2253–2263

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y et al (2012) A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22:1609–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Poplinski A, Tüttelmann F, Kanber D, Horsthemke B, Gromoll J (2010) Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl 33(4):642–649

    CAS  PubMed  Google Scholar 

  • Rajabi H, Mohseni-Kouchesfehani H, Mohammadi-Sangcheshmeh A, Farifteh-Nobijari F, Salehi M (2016) Pronuclear epigenetic modification of protamine deficient human sperm following injection into mouse oocytes. Syst Biol Reprod Med 62:125–132

    Article  CAS  PubMed  Google Scholar 

  • Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Richardson ME, Bleiziffer A, Tüttelmann F, Gromoll J, Wilkinson MF (2014) Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility. Hum Mol Genet 23(1):12–23

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Carme Pons M et al (2015) Spermatozoa from patients with seminal alterations exhibit a differential miRNA profile. Fertil Steril 104:591–601

    Article  CAS  PubMed  Google Scholar 

  • Salian S, Doshi T, Vanage G (2009) Perinatal exposure of rats to bisphenol A affects the fertility of male offspring. Life Sci 85(21–22):742–752

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T (2007) Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod 22:26–35

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Hiura H, Okae H et al (2011) Assessing loss of imprint methylation in sperm from subfertile men using novel methylation polymerase chain reaction Luminex analysis. Fertil Steril 95:129–134

    Article  CAS  PubMed  Google Scholar 

  • Sawan C, Herceg Z (2010) Histone modifications and cancer. Adv Genet 70:57–85

    CAS  PubMed  Google Scholar 

  • Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41:4104–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen F, Huang W, Huang JT, Xiong J, Yang Y, Wu K, Jia GF, Chen J, Feng YQ, Yuan BF, Liu SM (2015) Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J Clin Endocrinol Metab 100:E148–E154

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398(1–2):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE (2013) Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 11:228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stouder C, Paoloni-Giacobino A (2010) Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139(2):373–379

    Article  CAS  PubMed  Google Scholar 

  • Stouder C, Paoloni-Giacobino A (2011) Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction 141(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Stouder C, Somm E, Paoloni-Giacobino A (2011) Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod Toxicol 31:507–512

    Article  CAS  PubMed  Google Scholar 

  • Stuppia L, Franzago M, Ballerini P, Gatta V, Antonucci I (2015) Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics 7:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu LH, Yang JH (2016) RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res 44(D1):D259–D265

    Article  PubMed  Google Scholar 

  • Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26:3346–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E (2010) Chang HY long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng Y, Liao H-F, Yu CY, Mo CF, Lin SP (2015) Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells. Reproduction 150:R77–R91

    Article  CAS  PubMed  Google Scholar 

  • Urdinguio RG, Bayón GF, Dmitrijeva M, Toraño EG, Bravo C, Fraga MF, Bassas L, Larriba S, Fernández AF (2015) Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod 30:1014–1028

    Article  PubMed  Google Scholar 

  • Vassena R, Boue S, Gonzalez-Roca E, Aran B, Auer H, Veiga A, Izpisua Belmonte JC (2011) Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development 138:3699–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, Li L, Wang J, Li X, Shao Y et al (2011) Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 57:1722–1731

    Article  CAS  PubMed  Google Scholar 

  • Webster KE, O’Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J, Harrison DK, Aung H, Phutikanit N, Lyle R, Meachem SJ, Antonarakis SE, de Kretser DM, Hedger MP, Peterson P, Carroll BJ, Scott HS (2005) Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A 102(11):4068–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Huang W, Huang JT, Shen F, Xiong J, Yuan EF, Qin S, Zhang M, Feng YQ, Yuan BF, Liu SM (2016) Increased N6-methyladenosine in human sperm RNA as a risk factor for asthenozoospermia. Sci Rep 6:2434

    Google Scholar 

  • Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamudio NM, Chong S, O'Bryan MK (2008) Epigenetic regulation in male germ cells. Reproduction 136(2):131–146

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ho SM (2011) Epigenetics meets endocrinology. J Mol Endocrinol 46:R11–R32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew Danielsen JM, Wang XJ, Yang YG (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the contribution of Ms. Kushaan Dumasia for critically going through the manuscript (IR/420/09-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Balasinor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mohan, S., Deshpande, S., Balasinor, N.H. (2017). Male Infertility: An Epigenetic Perspective. In: SINGH, R., Singh, K. (eds) Male Infertility: Understanding, Causes and Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-10-4017-7_16

Download citation

Publish with us

Policies and ethics