Advertisement

Drug Delivery in Synergistic Combination with Other Treatments

  • Hanqing QianEmail author
  • Baorui Liu
Chapter

Abstract

“Combined therapy” is a term referring to either the coadministration of two or more pharmacotherapies or to the combination of different types of therapy methods. Combined therapy has played an important role in the treatment of gastric cancer, with the routine use of combination chemotherapy in the clinic. Recently, a great deal of interest has been focused on the application of combinational therapies in drug delivery systems. In this chapter, we will summarize the current state of nanoparticle-based combination strategies for use in gastric cancer treatment. These will include both in vitro and in vivo approaches and will also attempt to highlight their benefits, potential applications, and remaining challenges to their use in clinical translational research.

Keywords

Gastric Cancer Epidermal Growth Factor Receptor Photothermal Therapy Volume Phase Transition Temperature CD44v6 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Xu HB, Huang F, Su R, Shen FM, Lv QZ. Capecitabine plus oxaliplatin (XELOX) compared with 5-fluorouracil/leucovorin plus oxaliplatin (FOLFOXs) in advanced gastric cancer: meta-analysis of randomized controlled trials. Eur J Clin Pharmacol. 2015;71(5):589–601.CrossRefPubMedGoogle Scholar
  2. 2.
    Macdonald JS. Clinical overview: adjuvant therapy of gastrointestinal cancer. Cancer Chemother Pharmacol. 2004;54(Suppl 1):S4–11.PubMedGoogle Scholar
  3. 3.
    Quero L, Guillerm S, Hennequin C. Neoadjuvant or adjuvant therapy for gastric cancer. World J Gastrointest Oncol. 2015;7(8):102–10.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Luo W, Zhang H, Zhao Y, Wang L, Qi L, Ran J, et al. A retrospective study on intensity-modulated radiation therapy combined with chemotherapy after D2 radical surgery for gastric carcinoma. Mol Clin Oncol. 2016;4(5):740–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–25.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–11.CrossRefPubMedGoogle Scholar
  8. 8.
    Ferreira RJ, dos Santos DJ, Ferreira MJ. P-glycoprotein and membrane roles in multidrug resistance. Future Med Chem. 2015;7(7):929–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes BM, et al. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther. 2015;149:1–123.CrossRefPubMedGoogle Scholar
  10. 10.
    Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules. 2015;16(1):1–27.CrossRefPubMedGoogle Scholar
  11. 11.
    Nakahara C, Nakamura K, Yamanaka N, Baba E, Wada M, Matsunaga H, et al. Cyclosporin-A enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation in human gastric carcinoma cells. Clin Cancer Res. 2003;9(14):5409–16.PubMedGoogle Scholar
  12. 12.
    Takashima A, Boku N, Kato K, Nakamura K, Mizusawa J, Fukuda H, et al. Survival prolongation after treatment failure of first-line chemotherapy in patients with advanced gastric cancer: combined analysis of the Japan Clinical Oncology group trials JCOG9205 and JCOG9912. Gastric Cancer. 2014;17(3):522–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Ebert MP, Tanzer M, Balluff B, Burgermeister E, Kretzschmar AK, Hughes DJ, et al. TFAP2E-DKK4 and chemoresistance in colorectal cancer. N Engl J Med. 2012;366(1):44–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Abdelfatah E, Kerner Z, Nanda N, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol. 2016;9(4):560–79.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics. 2013;5(1):3.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu FL, Li RT, Yang M, Yue GF, Wang HY, Liu Q, et al. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2’-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett. 2015;363(1):7–16.CrossRefPubMedGoogle Scholar
  17. 17.
    Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS. Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res. 2005;65(18):8455–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Wan J, Liu T, Mei L, Li J, Gong K, Yu C, et al. Synergistic antitumour activity of sorafenib in combination with tetrandrine is mediated by reactive oxygen species (ROS)/Akt signaling. Br J Cancer. 2013;109(2):342–50.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li X, Lu X, Xu H, Zhu Z, Yin H, Qian X, et al. Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on “oxidation therapy”. Mol Pharm. 2012;9(2):222–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Y, Li K, Liu B, Feng SS. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials. 2010;31(35):9145–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Li W, Zhao H, Qian W, Li H, Zhang L, Ye Z, et al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials. 2012;33(21):5349–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, et al. Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer. 2004;108(3):464–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Sarkar S, Mazumdar A, Dash R, Sarkar D, Fisher PB, Mandal M. ZD6474 enhances paclitaxel antiproliferative and apoptotic effects in breast carcinoma cells. J Cell Physiol. 2011;226(2):375–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Bian X, Wu P, Sha H, Qian H, Wang Q, Cheng L, et al. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency. Onco Targets Ther. 2016;9:3153–62.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dai X, Tan C. Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev. 2015;81:184–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials. 2013;34(29):7191–203.CrossRefPubMedGoogle Scholar
  30. 30.
    Mir R, Pradhan SJ, Galande S. Chromatin organizer SATB1 as a novel molecular target for cancer therapy. Curr Drug Targets. 2012;13(13):1603–15.CrossRefPubMedGoogle Scholar
  31. 31.
    Huang B, Zhou H, Wang X, Liu Z. Silencing SATB1 with siRNA inhibits the proliferation and invasion of small cell lung cancer cells. Cancer Cell Int. 2013;13(1):8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Peng Z, Wang C, Fang E, Lu X, Wang G, Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One. 2014;9(3):e92924.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27):6408–19.CrossRefPubMedGoogle Scholar
  34. 34.
    Petrache Voicu SN, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E, et al. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int J Mol Sci. 2015;16(12):29398–416.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bamias A, Karina M, Papakostas P, Kostopoulos I, Bobos M, Vourli G, et al. A randomized phase III study of adjuvant platinum/docetaxel chemotherapy with or without radiation therapy in patients with gastric cancer. Cancer Chemother Pharmacol. 2010;65(6):1009–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Karasawa K, Matsumoto F, Ito S, Oba S, Furuya T, Hirowatari H, et al. Hyperfractionated radiotherapy with concurrent docetaxel for advanced head and neck cancer: a phase II study. Anticancer Res. 2012;32(9):4013–8.PubMedGoogle Scholar
  37. 37.
    Poudenx M, Bondiau PY, Chamorey E, Venissac N, Otto J, Pourel N, et al. Cisplatin-docetaxel induction plus concurrent 3-D conformal radiotherapy and weekly chemotherapy for locally advanced non-small cell lung cancer patients: a phase II trial. Oncology. 2012;83(6):321–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Xu WH, Han M, Dong Q, Fu ZX, Diao YY, Liu H, et al. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation. Int J Nanomedicine. 2012;7:2661–71.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jin C, Bai L, Wu H, Tian F, Guo G. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials. 2007;28(25):3724–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Cui FB, Li RT, Liu Q, Wu PY, Hu WJ, Yue GF, et al. Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer. Cancer Lett. 2014;346(1):53–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44(17):2546–54.CrossRefPubMedGoogle Scholar
  42. 42.
    Hong C, Kang J, Kim H, Lee C. Photothermal properties of inorganic nanomaterials as therapeutic agents for cancer thermotherapy. J Nanosci Nanotechnol. 2012;12(5):4352–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen Z, Ma L, Liu Y, Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2(3):238–50.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32(36):9796–809.CrossRefPubMedGoogle Scholar
  45. 45.
    Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660–77.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shida A, Mitsumori N, Nimura H, Takano Y, Iwasaki T, Fujisaki M, et al. Prediction of lymph node metastasis and sentinel node navigation surgery for patients with early-stage gastric cancer. World J Gastroenterol. 2016;22(33):7431–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics. 2015;5(11):1249–63.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ruan J, Song H, Qian Q, Li C, Wang K, Bao C, et al. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials. 2012;33(29):7093–102.CrossRefPubMedGoogle Scholar
  50. 50.
    Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond). 2012;7(4):597–615.CrossRefGoogle Scholar
  51. 51.
    Stojnev S, Krstic M, Ristic-Petrovic A, Stefanovic V, Hattori T. Gastric cancer stem cells: therapeutic targets. Gastric Cancer. 2014;17(1):13–25.CrossRefPubMedGoogle Scholar
  52. 52.
    Liang S, Li C, Zhang C, Chen Y, Xu L, Bao C, et al. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics. 2015;5(9):970–84.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chen Y, Wang W, Lian G, Qian C, Wang L, Zeng L, et al. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomedicine. 2012;7:359–68.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C, et al. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol. 2013;48(7):809–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Sun Z, Song X, Li X, Su T, Qi S, Qiao R, et al. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale. 2014;6(23):14343–53.CrossRefPubMedGoogle Scholar
  56. 56.
    Ma H, Liu Y, Shi M, Shao X, Zhong W, Liao W, et al. Theranostic, pH-responsive, doxorubicin-loaded nanoparticles inducing active targeting and apoptosis for advanced gastric cancer. Biomacromolecules. 2015;16(12):4022–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011;32(13):3447–58.CrossRefPubMedGoogle Scholar
  58. 58.
    Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24(37):5104–10.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Qiao R, Liu C, Liu M, Hu H, Liu C, Hou Y, et al. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano. 2015;9(2):2120–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Hiraki S, et al. Theranostic photosensitive nanoparticles for lymph node metastasis of gastric cancer. Ann Surg Oncol. 2015;22(Suppl 3):S923–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. 2016;98:3–18.CrossRefPubMedGoogle Scholar
  62. 62.
    Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The Comprehensive Cancer Center of Drum Tower HospitalMedical School of Nanjing University and Clinical Cancer Institute of Nanjing UniversityNanjingChina

Personalised recommendations