Skip to main content

Systemic Drug Delivery in Gastric Cancer

  • Chapter
  • First Online:
Personalized Management of Gastric Cancer
  • 1076 Accesses

Abstract

The tumor microenvironment is a critical factor that induces drug resistance of tumors, which is called Physiological Drug Resistance (PDR). PDR can be further classified into pH-induced Physiological Drug Resistance (PIPDR) and Penetration- Defect Related Physiological Drug Resistance (PDPDR). Copolymeric nanoparticles can effectively reverse PDR. Section 14.1 will introduce Physiological Drug Resistance (PDR) and the role of copolymeric nanoparticles in its reversion. Because nanoparticles are of adjustable physical properties, multivalent targeting ability, high loading ability, scalability and they are dispersible in water and can pass through the biological barrier, thus further exploration of nanoscale medical technology can obtain safer and more effective radiographic imaging and detection, early diagnosis and individualized treatment for gastric cancer. Section 14.2 will summarize the use of nanomedicine in this field, including magnetic iron oxide nanoparticles, magnetic fluorescent nanoparticles, metal nanoparticles, semiconductor nanoparticles, quantum dots, nanodiamonds, nanowires, nanometer polymers, nano carbons and graphenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibrahim NK, Samuels B, Page R, Doval D, Patel KM, Rao SC, et al. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol. 2005;23(25):6019–26.

    Article  CAS  PubMed  Google Scholar 

  2. Nishiyama N. Nanomedicine: nanocarriers shape up for long life. Nat Nanotechnol. 2007;2(4):203–4.

    Article  CAS  PubMed  Google Scholar 

  3. Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3(5):242–4.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3):153–63.

    Article  CAS  PubMed  Google Scholar 

  5. Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev. 2008;60(8):899–914.

    Article  CAS  PubMed  Google Scholar 

  6. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388(6645):860–2.

    Article  CAS  PubMed  Google Scholar 

  7. Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–54.

    Article  CAS  PubMed  Google Scholar 

  8. Raghunand N, Altbach MI, van Sluis R, Baggett B, Taylor CW, Bhujwalla ZM, et al. Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem Pharmacol. 1999;57(3):309–12.

    Article  CAS  PubMed  Google Scholar 

  9. Raghunand N, Gillies RJ. pH and drug resistance in tumors. Drug Resis Updat. 2000;3(1):39–47.

    Article  CAS  Google Scholar 

  10. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;60(9):2497–503.

    CAS  PubMed  Google Scholar 

  11. Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res. 2002;8(3):878–84.

    CAS  PubMed  Google Scholar 

  12. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  CAS  PubMed  Google Scholar 

  13. Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56(6):1194–8.

    CAS  PubMed  Google Scholar 

  14. Vukovic V, Tannock IF. Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer. 1997;75(8):1167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raghunand N, Gillies RJ. pH and chemotherapy. Novartis Found Symp. 2001;240:199–211. discussion 265–8

    Article  CAS  PubMed  Google Scholar 

  16. Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, et al. Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer. 1999;80(7):1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee CM, Tannock IF. Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br J Cancer. 2006;94(6):863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rotin D, Wan P, Grinstein S, Tannock I. Cytotoxicity of compounds that interfere with the regulation of intracellular pH: a potential new class of anticancer drugs. Cancer Res. 1987;47(6):1497–504.

    CAS  PubMed  Google Scholar 

  19. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–96.

    Article  CAS  PubMed  Google Scholar 

  20. Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov. 2005;4(5):381–5.

    Article  CAS  PubMed  Google Scholar 

  21. Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, et al. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One. 2011;6(9):e24172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF. The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res. 2005;11(24 Pt 1):8782–8.

    Article  CAS  PubMed  Google Scholar 

  23. Brooks S, Takita H, Shin K, Fang Y, Vaughan M, Sharma S, et al. Intratumoral injection of GM-CSF in perspective—a review. J Med. 2003;34(1-6):149–53.

    CAS  PubMed  Google Scholar 

  24. Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A. 2015;112(6):1827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma J, Chen CS, Blute T, Waxman DJ. Antiangiogenesis enhances intratumoral drug retention. Cancer Res. 2011;71(7):2675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A. 2015;112(46):14325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schaefer L, Reinhardt DP. Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev. 2016;97:1–3.

    Article  CAS  PubMed  Google Scholar 

  28. Choi IK, Strauss R, Richter M, Yun CO, Lieber A. Strategies to increase drug penetration in solid tumors. Front Oncol. 2013;3:193.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ganesh S, Gonzalez-Edick M, Gibbons D, Van Roey M, Jooss K. Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin Cancer Res. 2008;14(12):3933–41.

    Article  CAS  PubMed  Google Scholar 

  30. McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66(5):2509–13.

    Article  CAS  PubMed  Google Scholar 

  31. Eikenes L, Tufto I, Schnell EA, Bjorkoy A, De Lange Davies C. Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts. Anticancer Res. 2010;30(2):359–68.

    CAS  PubMed  Google Scholar 

  32. Mok W, Boucher Y, Jain RK. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 2007;67(22):10664–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev. 2016. Doi:10.1016/j.addr.2016.03.008.

    Google Scholar 

  34. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–78.

    Article  CAS  PubMed  Google Scholar 

  35. Cho H, Lai TC, Tomoda K, Kwon GS. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech. 2015;16(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  36. Grinberg S, Linder C, Heldman E. Progress in lipid-based nanoparticles for cancer therapy. Crit Rev Oncog. 2014;19(3-4):247–60.

    Article  PubMed  Google Scholar 

  37. Frazier N, Ghandehari H. Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors. Biotechnol Bioeng. 2015;112(10):1967–83.

    Article  CAS  PubMed  Google Scholar 

  38. Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res. 1996;13(5):671–82.

    Article  CAS  PubMed  Google Scholar 

  39. Sugahara KN, Scodeller P, Braun GB, de Mendoza TH, Yamazaki CM, Kluger MD, et al. A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. J Control Release. 2015;212:59–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):33–64. 1

    Article  Google Scholar 

  41. Langer K, Balthasar S, Vogel V, Dinauer N, Briesen HV, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257(1–2):169–80.

    Article  CAS  PubMed  Google Scholar 

  42. Dreis S, Rothweiler F, Michaelis M, Cinatl Jr J, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm. 2007;341(1–2):207–14.

    Article  CAS  PubMed  Google Scholar 

  43. Chen L, Chen F, Zhao M, Zhu X, Ke C, Yu J, et al. A redox-sensitive Micelle-Like nanoparticle self-assembled from amphiphilic adriamycin-human serum albumin conjugates for tumor targeted therapy. Biomed Res Int. 2015;2015:1–10.

    Google Scholar 

  44. Kloover JS, Bakker MAD, Gelderblom H, Meerbeeck JPV. Fatal outcome of a hypersensitivity reaction to paclitaxel: a critical review of premedication regimens. Br J Cancer. 2004;90(2):304–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 2005;92(7):1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer. 2007;597(2–3):266–9.

    Google Scholar 

  47. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs. 2012;30(4):1621–7.

    Article  CAS  Google Scholar 

  48. Slütter B, Jiskoot W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J Control Release. 2010;148(1):117–21.

    Article  PubMed  Google Scholar 

  49. Song RF, Li XJ, Cheng XL, Fu AR, Wang YH, Feng YJ, et al. Paclitaxel-loaded trimethyl chitosan-based polymeric nanoparticle for the effective treatment of gastroenteric tumors. Oncol Rep. 2014;32(4):1481–8.

    CAS  PubMed  Google Scholar 

  50. Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, et al. EGCG, major component of green tea, inhibits tumor growth by inhibiting VEGF production in human colon carcinoma cells. Br J Cancer. 2001;84(6):844–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee IT, Lin CC, Lee CY, Hsieh PW, Yang CM. Protective effects of (−)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J Nutr Biochem. 2013;24(1):124–36.

    Article  CAS  PubMed  Google Scholar 

  52. Ihara N, Schmitz S, Kurisawa M, Chung JE, Uyama H, Kobayashi S. Amplification of inhibitory activity of catechin against disease-related enzymes by conjugation on poly(epsilon-lysine). Biomacromolecules. 2004;5(5):1633–6.

    Article  CAS  PubMed  Google Scholar 

  53. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci. 2008;13(4):440–52.

    Article  PubMed  Google Scholar 

  54. Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets. 2007;7(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  55. Lin YH, Chen ZR, Lai CH, Hsieh CH, Feng CL. Active targeted nanoparticles for oral administration of gastric cancer therapy. Biomacromolecules. 2015;16(9):3021–32.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao D, Zhuo RX, Cheng SX. Modification of calcium carbonate based gene and drug delivery systems by a cell-penetrating peptide. Mol BioSyst. 2012;8(12):3288–94.

    Article  CAS  PubMed  Google Scholar 

  57. He XW, Liu T, Chen YX, Cheng DJ, Li XR, Xiao Y, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther. 2008;15(3):193–202.

    Article  CAS  PubMed  Google Scholar 

  58. Singh M, Chandrasekaran N, Mukherjee A, Kumar M, Kumaraguru AK. Cancerous cell targeting and destruction using pH stabilized amperometric bioconjugated gold nanoparticles from marine macroalgae. Bioprocess Biosyst Eng. 2014;37(9):1–11.

    Article  Google Scholar 

  59. Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ES. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol. 2004;50(2):87–100.

    Article  CAS  PubMed  Google Scholar 

  60. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow–derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deryugina EI, Luo GX, Reisfeld RA, Bourdon MA, Strongin A. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res. 1900;17(5A):3201–10.

    Google Scholar 

  63. Hua J, Muschel RJ. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res. 1996;56(22):5279–84.

    CAS  PubMed  Google Scholar 

  64. Mcquibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276(47):43503–8.

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.

    Article  CAS  PubMed  Google Scholar 

  66. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials. 2013;34(29):7191–203.

    Article  CAS  PubMed  Google Scholar 

  68. Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, et al. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One. 2013;8(7):e69643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cui FB, Liu Q, Li RT, Shen J, Wu PY, Yu LX, et al. Enhancement of radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells. Int J Nanomedicine. 2014;9(1):2345–58.

    PubMed  PubMed Central  Google Scholar 

  70. Cui FB, Li RT, Liu Q, Wu PY, Hu WJ, Yue GF, et al. Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer. Cancer Lett. 2014;346(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  71. Wu FL, Li RT, Yang M, Yue GF, Wang HY, Liu Q, et al. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett. 2015;363(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  72. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275(51):40517–28.

    Article  CAS  PubMed  Google Scholar 

  73. Wu P, Liu Q, Li R, Wang J, Zhen X, Yue G, et al. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces. 2013;5(23):12638–45.

    Article  CAS  PubMed  Google Scholar 

  74. Jain R, Dandekar P, Patravale V. Diagnostic nanocarriers for sentinel lymph node imaging. J Control Release. 2009;138(2):90–102.

    Article  CAS  PubMed  Google Scholar 

  75. Lim JS, Choi J, Song J, Yong EC, Lim SJ, Sang KL, et al. Nanoscale iodized oil emulsion: a useful tracer for pretreatment sentinel node detection using CT lymphography in a normal canine gastric model. Surg Endosc. 2012;26(8):2267–74.

    Article  PubMed  Google Scholar 

  76. Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T. Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol. 2000;75(75):919–22.

    Article  CAS  Google Scholar 

  77. Aas Z, Babaei E, Hosseinpour Feizi MA, Dehghan G. Anti-proliferative and apoptotic effects of Dendrosomal Farnesiferol C on gastric cancer cells. Asian Pac J Cancer Prev. 2014;16(13):5325–9.

    Article  Google Scholar 

  78. Chen L, Bao CC, Yang H, Li D, Lei C, Wang T, et al. A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells. Biosens Bioelectron. 2011;26(7):3246–53.

    Article  CAS  PubMed  Google Scholar 

  79. Kan W, Jing R, Qian Q, Hua S, Bao C, Zhang X, et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnology. 2011;9(1):23.

    Article  Google Scholar 

  80. Liu X, Deng X, Li X, Xue D, Zhang H, Liu T, et al. A visualized investigation at the atomic scale of the antitumor effect of magnetic nanomedicine on gastric cancer cells. Nanomedicine. 2016;9(9):1389–402.

    Article  Google Scholar 

  81. Chen Y, Wang W, Lian G, Qian C, Wang L, Zeng L, et al. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomedicine. 2012;7(9):359–68.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, R., Yang, M. (2017). Systemic Drug Delivery in Gastric Cancer. In: Wei, J., Liu, B. (eds) Personalized Management of Gastric Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-3978-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3978-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3977-5

  • Online ISBN: 978-981-10-3978-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics