Use of Nanomedicine in the Diagnosis of Gastric Cancer

  • Rutian LiEmail author
  • Xiaoping Qian


Gastric cancer is one of the most common cancers and a leading cause of cancer related death worldwide. As to the diagnosis of gastric cancer, both regular systemic imaging and locoregional imaging are of great importance. Besides, there are still other ways for the detecting of gastric cancer, including the early detection of gastric cancer by endoscopy, the detection of gastric-cancer related biomarkers and circulating tumor cells (CTCs) of gastric cancer. However, conventional diagnostic methods usually suffer from lack of specificity and sensitivity. Nanomedicine provide a promising direction in the diagnosis of gastric cancer. Moreover, nanomedicine is also capable of integrating the functions of diagnosis and treatment together (theranostics). In this chapter, we summarize the use of nanomedicine in the diagnosis and theranostics of gastric cancer.


Gastric Cancer Gastric Cancer Patient Circulate Tumor Cell Gastric Cancer Tissue Metastatic Gastric Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol. 2006;12(1):17–20.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet. 2016;387(10015):251–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Imano M, Yasuda A, Itoh T, Satou T, Peng YF, Kato H, et al. Phase II study of single intraperitoneal chemotherapy followed by systemic chemotherapy for gastric cancer with peritoneal metastasis. J Gastrointest Surg. 2012;16(12):2190–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Ishigami H, Kitayama J, Kaisaki S, Hidemura A, Kato M, Otani K, et al. Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol. 2010;21(1):67–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Ishigami H, Kitayama J, Kaisaki S, Yamaguchi H, Yamashita H, Emoto S, et al. Phase I study of biweekly intravenous paclitaxel plus intraperitoneal cisplatin and paclitaxel for gastric cancer with peritoneal metastasis. Oncology. 2010;79(3-4):269–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamaguchi N, Fujii T, Aoi S, Kozuch PS, Hortobagyi GN, Blum RH. Comparison of cardiac events associated with liposomal doxorubicin, epirubicin and doxorubicin in breast cancer: a Bayesian network meta-analysis. Eur J Cancer. 2015;51(16):2314–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Khan DR, Webb MN, Cadotte TH, Gavette MN. Use of targeted liposome-based chemotherapeutics to treat breast cancer. Breast Cancer (Auckl). 2015;9(Suppl 2):1–5.Google Scholar
  9. 9.
    Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4):853–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Arias JL. Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin Drug Deliv. 2011;8(12):​1589–608.PubMedCrossRefGoogle Scholar
  11. 11.
    Poveda AM, Selle F, Hilpert F, Reuss A, Savarese A, Vergote I, et al. Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J Clin Oncol. 2015;33(32):3836–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Mahner S, Meier W, du Bois A, Brown C, Lorusso D, Dell’Anna T, et al. Carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in very platinum-sensitive ovarian cancer patients: results from a subset analysis of the CALYPSO phase III trial. Eur J Cancer. 2015;51(3):352–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Clavio M, Venturino C, Pierri I, Garrone A, Miglino M, Canepa L, et al. Combination of liposomal daunorubicin (DaunoXome), fludarabine, and cytarabine (FLAD) in patients with poor-risk acute leukemia. Ann Hematol. 2004;83(11):696–703.PubMedCrossRefGoogle Scholar
  14. 14.
    Sedki M, Vannier JP, Leverger G, Yakouben K, Adjaoud D, Vilmer E, et al. Liposomal daunorubicin (Daunoxome) and polyethylated glycol conjugated asparaginase (PEG-ASPA) in children with relapsed and refractory acute lymphoblastic leukemia treated on compassionate basis. J Egypt Natl Canc Inst. 2008;20(1):55–62.PubMedGoogle Scholar
  15. 15.
    Camera A, Rinaldi CR, Palmieri S, Cantore N, Mele G, Mettivier V, et al. Sequential continuous infusion of fludarabine and cytarabine associated with liposomal daunorubicin (DaunoXome) (FLAD) in primary refractory or relapsed adult acute myeloid leukemia patients. Ann Hematol. 2009;88(2):151–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Hu L, Liang G, Yuliang W, Bingjing Z, Xiangdong Z, Rufu X. Assessing the effectiveness and safety of liposomal paclitaxel in combination with cisplatin as first-line chemotherapy for patients with advanced NSCLC with regional lymph-node metastasis: study protocol for a randomized controlled trial (PLC-GC trial). Trials. 2013;14:45.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Phuphanich S, Maria B, Braeckman R, Chamberlain M. A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J Neurooncol. 2007;81(2):201–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Beauchesne P, Blonski M, Brissart H. Response to intrathecal infusions of Depocyt(R) in secondary diffuse leptomeningeal gliomatosis. A case report. In Vivo. 2011;25(6):991–3.PubMedGoogle Scholar
  19. 19.
    Kundranda MN, Niu J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des Devel Ther. 2015;9:3767–77.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, et al. Paclitaxel formulations: challenges and novel delivery options. Curr Drug Deliv. 2014;11(6):666–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Cecco S, Aliberti M, Baldo P, Giacomin E, Leone R. Safety and efficacy evaluation of albumin-bound paclitaxel. Expert Opin Drug Saf. 2014;13(4):511–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang L, Zhao D. Applications of nanoparticles for brain cancer imaging and therapy. J Biomed Nanotechnol. 2014;10(9):1713–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88(1054):20150207.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ho D. Nanodiamond-based chemotherapy and imaging. Cancer Treat Res. 2015;166:85–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K, et al. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev. 2012;64(13):1447–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660–77.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wang L, Wang Y, Li Z. Nanoparticle-based tumor theranostics with molecular imaging. Curr Pharm Biotechnol. 2013;14(7):683–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Zavaleta CL, Garai E, Liu JT, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci USA. 2013;110(25):E2288–97.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wang YW, Kang S, Khan A, Bao PQ, Liu JT. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Express. 2015;6(10):​3714–23.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wang YW, Khan A, Leigh SY, Wang D, Chen Y, Meza D, et al. Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. Biomed Opt Express. 2014;5(9):2883–95.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Perfezou M, Turner A, Merkoci A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev. 2012;41(7):2606–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Ravalli A, Marrazza G. Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J Nanosci Nanotechnol. 2015;15(5):3307–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Vilela D, Gonzalez MC, Escarpa A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta. 2012;751:24–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem. 2005;382(8):1751–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine (Lond). 2015;10(23):3495–512.CrossRefGoogle Scholar
  38. 38.
    Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Huang S, Zhu F, Qiu H, Xiao Q, Zhou Q, Su W, et al. A sensitive quantum dots-based “OFF-ON” fluorescent sensor for ruthenium anticancer drugs and ctDNA. Colloids Surf B Biointerfaces. 2014;117:​240–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Hayat A, Catanante G, Marty JL. Current trends in nanomaterial-based amperometric biosensors. Sensors (Basel). 2014;14(12):23439–61.CrossRefGoogle Scholar
  41. 41.
    Swierczewska M, Liu G, Lee S, Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev. 2012;41(7):2641–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Shiddiky MJ, Rauf S, Kithva PH, Trau M. Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosens Bioelectron. 2012;35(1):251–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Afreen S, Muthoosamy K, Manickam S, Hashim U. Functionalized fullerene (C(6)(0)) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron. 2015;63:354–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Muluneh M, Issadore D. Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev. 2014;66:101–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Wittrup A, Zhang SH, Svensson KJ, Kucharzewska P, Johansson MC, Morgelin M, et al. Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc Natl Acad Sci USA. 2010;107(30):13342–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nie L, Liu F, Ma P, Xiao X. Applications of gold nanoparticles in optical biosensors. J Biomed Nanotechnol. 2014;10(10):2700–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Jena BK, Ghosh S, Bera R, Dey RS, Das AK, Raj CR. Bioanalytical applications of au nanoparticles. Recent Pat Nanotechnol. 2010;4(1):41–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Devi RV, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015;68:688–98.PubMedCrossRefGoogle Scholar
  50. 50.
    Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim S, Bawendi MG. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc. 2003;125(48):14652–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang Y, Zhou D. Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert Rev Mol Diagn. 2012;12(6):565–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhong Z, Wu W, Wang D, Shan J, Qing Y, Zhang Z. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron. 2010;25(10):2379–83.PubMedCrossRefGoogle Scholar
  54. 54.
    Shu H, Wen W, Xiong H, Zhang X, Wang S. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem Commun. 2013;37:15–9.CrossRefGoogle Scholar
  55. 55.
    Chen H, Tang D, Zhang B, Liu B, Cui Y, Chen G. Electrochemical immunosensor for carcinoembryonic antigen based on nanosilver-coated magnetic beads and gold-graphene nanolabels. Talanta. 2012;91:95–102.PubMedCrossRefGoogle Scholar
  56. 56.
    Ling S, Yuan R, Chai Y, Zhang T. Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles composite membrane/Prussian blue modified gold electrode. Bioprocess Biosyst Eng. 2009;32(3):407–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Ravalli A, Dos Santos GP, Ferroni M, Faglia G, Yamanaka H, Marrazza G. New label free CA125 detection based on gold nanostructured screen-printed electrode. Sens Actuators B. 2013;179:194–200.CrossRefGoogle Scholar
  58. 58.
    Das J, Kelley SO. Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of CA-125 in serum and whole blood. Anal Chem. 2011;83(4):1167–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Tang D, Su B, Tang J, Ren J, Chen G. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem. 2010;82(4):1527–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Wu D, Guo Z, Liu Y, Guo A, Lou W, Fan D, et al. Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta. 2015;134:305–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Chun L, Kim S-E, Cho M, Choe W-S, Nam J, Lee DW, et al. Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sens Actuators B Chem. 2013;186:446–50.CrossRefGoogle Scholar
  62. 62.
    Cainap C, Nagy V, Gherman A, Cetean S, Laszlo I, Constantin AM, et al. Classic tumor markers in gastric cancer. current standards and limitations. Clujul Med. 2015;88(2):111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jokerst JV, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW, et al. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron. 2009;24(12):3622–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Li R, Li X, Xie L, Ding D, Hu Y, Qian X, et al. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. Int J Pharm. 2009;379(1):158–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, et al. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One. 2013;8(7):e69643.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, et al. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One. 2011;6(9):e24172.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Mirkin C, Meade TJ, Petrosko SH, Stegh AH. Nanotechnology based precision tools for the detection and treatment of cancer. New York: Springer; 2015. p. 322.Google Scholar
  69. 69.
    Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, et al. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine. 2015;10:749–63.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Liu WF, Ji SR, Sun JJ, Zhang Y, Liu ZY, Liang AB, et al. CD146 expression correlates with epithelial-mesenchymal transition markers and a poor prognosis in gastric cancer. Int J Mol Sci. 2012;13(5):6399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wang K, Ruan J, Qian Q, Song H, Bao C, Zhang X, et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnology. 2011;9:23.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, et al. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnology. 2013;11:17.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kulhari H, Pooja D, Rompicharla SV, Sistla R, Adams DJ. Biomedical applications of trastuzumab: as a therapeutic agent and a targeting ligand. Med Res Rev. 2015;35(4):849–76.PubMedCrossRefGoogle Scholar
  74. 74.
    Kataoka H, Mori Y, Shimura T, Nishie H, Natsume M, Mochizuki H, et al. A phase II prospective study of the trastuzumab combined with 5-weekly S-1 and CDDP therapy for HER2-positive advanced gastric cancer. Cancer Chemother Pharmacol. 2016;77(5):957–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Fornaro L, Lucchesi M, Caparello C, Vasile E, Caponi S, Ginocchi L, et al. Anti-HER agents in gastric cancer: from bench to bedside. Nat Rev Gastroenterol Hepatol. 2011;8(7):369–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen TJ, Cheng TH, Chen CY, Hsu SC, Cheng TL, Liu GC, et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem. 2009;14(2):253–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Tasi C-P, Chen C-Y, Hung Y, Chang F-H, Mou C-Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19(7):5737–43.Google Scholar
  78. 78.
    Li K, Liu Y, Pu K-Y, Feng S-S, Zhna R, Liu B. Polyhedral oligomeric silsesquioxanes-containing conjugated polymer loaded PLGA nanoparticles with trastuzumab (herceptin) functionalization for HER2-positive cancer cell detection. Adv Funct Mater. 2011;21(2):287–94.CrossRefGoogle Scholar
  79. 79.
    Jang M, Yoon YI, Kwon YS, Yoon TJ, Lee HJ, Hwang SI, et al. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer. Korean J Radiol. 2014;15(4):411–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rajagopal I, Niveditha SR, Sahadev R, Nagappa PK, Rajendra SG. HER 2 expression in gastric and gastro-esophageal junction (GEJ) adenocarcinomas. J Clin Diagn Res. 2015;9(3):EC06–10.PubMedPubMedCentralGoogle Scholar
  81. 81.
    De Carli DM, Rocha MP, Antunes LC, Fagundes RB. Immunohistochemical expression of HER2 in adenocarcinoma of the stomach. Arq Gastroenterol. 2015;52(2):152–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Fan X, Wang L, Guo Y, Tong H, Li L, Ding J, et al. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft. Nanotechnology. 2013;24(32):325102.PubMedCrossRefGoogle Scholar
  83. 83.
    Cheng CC, Huang CF, Ho AS, Peng CL, Chang CC, Mai FD, et al. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine. 2013;8:​1385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jian-Hui C, Shi-Rong C, Hui W, Si-le C, Jian-Bo X, Er-Tao Z, et al. Prognostic value of three different lymph node staging systems in the survival of patients with gastric cancer following D2 lymphadenectomy. Tumour Biol. 2016;37(8):11105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kang WM, Meng QB, Yu JC, Ma ZQ, Li ZT. Factors associated with early recurrence after curative surgery for gastric cancer. World J Gastroenterol. 2015;21(19):5934–40.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Hiraki S, et al. Theranostic photosensitive nanoparticles for lymph node metastasis of gastric cancer. Ann Surg Oncol. 2015;22(Suppl 3):923–8.CrossRefGoogle Scholar
  87. 87.
    Qiao R, Liu C, Liu M, Hu H, Hou Y, Wu K, et al. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano. 2015;9(2):2120–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, et al. Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer. 2006;9(2):120–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Hill TK, Mohs AM. Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(4):498–511.PubMedCrossRefGoogle Scholar
  90. 90.
    Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm. 2015;482(1–2):2–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Yaseen MA, Yu J, Jung B, Wong MS, Anvari B. Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm. 2009;6(5):1321–32.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials. 2013;34(31):7706–14.PubMedCrossRefGoogle Scholar
  93. 93.
    Hill TK, Abdulahad A, Kelkar SS, Marini FC, Long TE, Provenzale JM, et al. Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem. 2015;26(2):294–303.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lin M, Chen JF, Lu YT, Zhang Y, Song J, Hou S, et al. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res. 2014;47(10):2941–50.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Myung JH, Tam KA, Park SJ, Cha A, Hong S. Recent advances in nanotechnology-based detection and separation of circulating tumor cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):223–39.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang HY, Wei J, Zou ZY, Qian XP, Liu BR. Circulating tumour cells predict survival in gastric cancer patients: a meta-analysis. Contemp Oncol (Pozn). 2015;19(6):451–7.Google Scholar
  97. 97.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.PubMedCrossRefGoogle Scholar
  98. 98.
    Olmos D, Arkenau HT, Ang JE, Ledaki I, Attard G, Carden CP, et al. Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol. 2009;20(1):27–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Yoon HJ, Kozminsky M, Nagrath S. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano. 2014;8(3):1995–2017.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Chen Z, Hong G, Wang H, Welsher K, Tabakman SM, Sherlock SP, et al. Graphite-coated magnetic nanoparticle microarray for few-cells enrichment and detection. ACS Nano. 2012;6(2):1094–101.PubMedCrossRefGoogle Scholar
  101. 101.
    Hou S, Zhao L, Shen Q, Yu J, Ng C, Kong X, et al. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem Int Ed Engl. 2013;52(12):3379–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Bhana S, Wang Y, Huang X. Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine (Lond). 2015;10(12):1973–90.CrossRefGoogle Scholar
  103. 103.
    Huang D, Xiang N, Tang W, Ni Z. Microfluidics-based circulating tumor cells separation. Prog Chem. 2015;7(27):882–912.Google Scholar
  104. 104.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hyun KA, Lee TY, Jung HI. Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal Chem. 2013;85(9):4439–45.PubMedCrossRefGoogle Scholar
  106. 106.
    Galletti G, Sung MS, Vahdat LT, Shah MA, Santana SM, Altavilla G, et al. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 2014;14(1):147–56.PubMedCrossRefGoogle Scholar
  107. 107.
    Ohnaga T, Shimada Y, Takata K, Obata T, Okumura T, Nagata T, et al. Capture of esophageal and breast cancer cells with polymeric microfluidic devices for CTC isolation. Mol Clin Oncol. 2016;4(4):599–602.PubMedPubMedCentralGoogle Scholar
  108. 108.
    He W, Xu D, Wang Z, Xiang X, Tang B, Li S, et al. Detecting ALK-rearrangement of CTC enriched by nanovelcro chip in advanced NSCLC patients. Oncotarget. 2016; doi: 10.18632/oncotarget.8305.Google Scholar
  109. 109.
    Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12(7):685–91.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hofmann M, Stoss O, Shi D, Buttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52(7):797–805.PubMedCrossRefGoogle Scholar
  111. 111.
    Janjigian YY, Werner D, Pauligk C, Steinmetz K, Kelsen DP, Jager E, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol. 2012;23(10):2656–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol. 2009;4(12):855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Xu H, Aguilar ZP, Yang L, Kuang M, Duan H, Xiong Y, et al. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials. 2011;32(36):9758–65.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Song EQ, Hu J, Wen CY, Tian ZQ, Yu X, Zhang ZL, et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano. 2011;5(2):761–70.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lee HJ, Cho HY, Oh JH, Namkoong K, Lee JG, Park JM, et al. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles. Biosens Bioelectron. 2013;47:​508–14.PubMedCrossRefGoogle Scholar
  116. 116.
    Viraka NBP, Kanchanapally R, Pramanik A, Sinha SS, Chavva SR, Hamme AN, et al. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells. Bioconjug Chem. 2015;26(2):235–42.CrossRefGoogle Scholar
  117. 117.
    Gaddes ER, Gydush G, Li S, Chen N, Dong C, Wang Y. Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface. Biomacromolecules. 2015;16(4):1382–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhao W, Cui CH, Bose S, Guo D, Shen C, Wong WP, et al. Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci USA. 2012;109(48):19626–31.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    He R, Zhao L, Liu Y, Zhang N, Cheng B, He Z, et al. Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomed Microdevices. 2013;15(4):617–26.PubMedCrossRefGoogle Scholar
  120. 120.
    Chen YW, Liou GG, Pan HB, Tseng HH, Hung YT, Chou CP. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. Int J Nanomedicine. 2015;10:6997–7018.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C, et al. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol. 2013;48(7):809–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The Comprehensive Cancer Center of Drum-Tower HospitalMedical School of Nanjing University & Clinical Cancer Institute of Nanjing UniversityNanjingChina

Personalised recommendations