Advertisement

Hormonal Responses to a Potential Mate in Male Birds

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1001)

Abstract

Social interactions rapidly modulate circulating hormone levels and behavioral patterns in most male animals. In male birds, sexual interaction or visual exposure to a conspecific female usually causes an increase in the levels of peripheral reproductive hormones, such as gonadotropins and androgens. Although the perception of a female presence is processed in the brain and peripheral hormonal levels are regulated by the hypothalamus–pituitary–gonadal (HPG) axis, the specific neural circuitry and neurochemical systems that translate social signals into reproductive physiology in male birds were not well understood until 2008. Today, there is growing evidence that two neuropeptides localized in the hypothalamus, gonadotropin-releasing hormone and gonadotropin-inhibitory hormone, are responsive to social information. These two neuropeptides have thus begun to be regarded as modulators translating social stimuli into changes in the levels of peripheral reproductive hormones. Here, we review previous studies that investigated the male responses of the HPG axis to the mere presence of a female or to sexual interaction, and describe the neurochemical pathways linking visual perception of a potential mate to rapid peripheral hormonal changes via the brain–pituitary endocrine system in sexually mature male Japanese quail.

Keywords

Call Courtship behavior Female presence Luteinizing hormone Monoamine Noradrenaline Norepinephrine Social environment Song Testosterone 

References

  1. Abe K, Matsui S, Watanabe D. Transgenic songbirds with suppressed or enhanced activity of CREB transcription factor. Proc Natl Acad Sci U S A. 2015;112(24):7599–604. doi: 10.1073/pnas.1413484112.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F. Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning. Proc Natl Acad Sci U S A. 2009;106(42):17963–7. doi: 10.1073/pnas.0909139106.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ball GF. The neural integration of environmental information by seasonally breeding birds. Am Zool. 1993;33:185–99.CrossRefGoogle Scholar
  4. Balthazart J, Evrard L, Surlemont C. Effects of the nonsteroidal inhibitor R76713 on testosterone-induced sexual behavior in the Japanese quail (Coturnix coturnix japonica). Horm Behav. 1990a;24(4):510–31.CrossRefPubMedGoogle Scholar
  5. Balthazart J, Foidart A, Surlemont C, Vockel A, Harada N. Distribution of aromatase in the brain of the Japanese quail, ring dove, and zebra finch: an immunocytochemical study. J Comp Neurol. 1990b;301(2):276–88.CrossRefPubMedGoogle Scholar
  6. Balthazart J, Absil P, Foidart A, Houbart M, Harada N, Ball GF. Distribution of aromatase-immunoreactive cells in the forebrain of zebra finches (Taeniopygia guttata): implications for the neural action of steroids and nuclear definition in the avian hypothalamus. J Neurobiol. 1996;31(2):129–48.CrossRefPubMedGoogle Scholar
  7. Balthazart J, Baillien M, Charlier TD, Ball GF. Calcium-dependent phosphorylation processes control brain aromatase in quail. Eur J Neurosci. 2003;17(8):1591–606. doi: 10.1046/j.1460-9568.2003.02598.x.CrossRefPubMedGoogle Scholar
  8. Balthazart J, Baillien M, Ball GF. Rapid control of brain aromatase activity by glutamatergic inputs. Endocrinology. 2006;147(1):359–66. doi: 10.1210/en.2005-0845.CrossRefPubMedGoogle Scholar
  9. Bentley GE, Perfito N, Ukena K, Tsutsui K, Wingfield JC. Gonadotropin-inhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chicken-gonadotropin-releasing hormone. J Neuroendocrinol. 2003;15(8):794–802.CrossRefPubMedGoogle Scholar
  10. Burger JW. The effect of photic stimuli on the reproductive cycle of the male starling, Sturnus vulgaris. J Exp Zool. 1953;124:227–39.CrossRefGoogle Scholar
  11. Burmeister SS, Wilczynski W. Social signals regulate gonadotropin-releasing hormone neurons in the green treefrog. Brain Behav Evol. 2005;65(1):26–32. doi: 10.1159/000081108.CrossRefPubMedGoogle Scholar
  12. Burmeister SS, Jarvis ED, Fernald RD. Rapid behavioral and genomic responses to social opportunity. PLoS Biol. 2005;3(11):e363. doi: 10.1371/journal.pbio.0030363.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Calisi RM, Diaz-Munoz SL, Wingfield JC, Bentley GE. Social and breeding status are associated with the expression of GnIH. Genes Brain Behav. 2011;10(5):557–64. doi: 10.1111/j.1601-183X.2011.00693.x.CrossRefPubMedGoogle Scholar
  14. Charlier TD, Ball GF, Balthazart J. Sexual behavior activates the expression of the immediate early genes c-fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail. Neuroscience. 2005;131(1):13–30. doi: 10.1016/j.neuroscience.2004.09.068.CrossRefPubMedGoogle Scholar
  15. Charlier TD, Harada N, Balthazart J, Cornil CA. Human and quail aromatase activity is rapidly and reversibly inhibited by phosphorylating conditions. Endocrinology. 2011;152(11):4199–210. doi: 10.1210/en.2011-0119.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Dejace C, Ball GF, Balthazart J. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior. Endocrinology. 2005;146(9):3809–20. doi: 10.1210/en.2005-0441.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Balthazart J. Estradiol rapidly activates male sexual behavior and affects brain monoamine levels in the quail brain. Behav Brain Res. 2006;166(1):110–23.CrossRefPubMedGoogle Scholar
  18. Cornil CA, Stevenson TJ, Ball GF. Are rapid changes in gonadal testosterone release involved in the fast modulation of brain estrogen effects? Gen Comp Endocrinol. 2009;163(3):298–305. doi: 10.1016/j.ygcen.2009.04.029.CrossRefPubMedPubMedCentralGoogle Scholar
  19. de Bournonville C, Dickens MJ, Ball GF, Balthazart J, Cornil CA. Dynamic changes in brain aromatase activity following sexual interactions in males: where, when and why? Psychoneuroendocrinology. 2013;38(6):789–99. doi: 10.1016/j.psyneuen.2012.09.001.CrossRefPubMedGoogle Scholar
  20. Decourt C, Tillet Y, Caraty A, Franceschini I, Briant C. Kisspeptin immunoreactive neurons in the equine hypothalamus interactions with GnRH neuronal system. J Chem Neuroanat. 2008;36(3-4):131–7.CrossRefPubMedGoogle Scholar
  21. Dellovade TL, Rissman EF. Gonadotropin-releasing hormone-immunoreactive cell numbers change in response to social interactions. Endocrinology. 1994;134(5):2189–97.CrossRefPubMedGoogle Scholar
  22. Delville Y, Sulon J, Hendrick JC, Balthazart J. Effect of the presence of females on the pituitary-testicular activity in male Japanese quail (Coturnix coturnix japonica). Gen Comp Endocrinol. 1984;55:295–305.CrossRefPubMedGoogle Scholar
  23. Deregnaucourt S. Interspecific hybridization as a tool to understand vocal divergence: the example of crowing in quail (Genus Coturnix). PLoS One. 2010;5(2):e9451. doi: 10.1371/journal.pone.0009451.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Domjan M, Nash S. Stimulus control of social behaviour in male Japanese quail, Coturnix coturnix japonica. Anim Behav. 1988;36:1006–15.CrossRefGoogle Scholar
  25. Dufty AM, Wingfield JC. The influence of social cues on the reproductive endocrinology of male brown-headed cowbirds: field and laboratory studies. Horm Behav. 1986;20:222–34.CrossRefPubMedGoogle Scholar
  26. Eens M, Pinxten R, Verheyen RF. On the function of singing and wing-waving in the European starling Sturnus vulgaris. Bird Study. 1990;37(1):48–52. doi: 10.1080/00063659009477038.CrossRefGoogle Scholar
  27. Eens M, Pinxten R, Verheyen RF. Male song as a cue for mate choice in the European starling. Behaviour. 1991;116:210–38.CrossRefGoogle Scholar
  28. Ernst DK, Bentley GE. Neural and neuroendocrine processing of a non-photic cue in an opportunistically-breeding songbird. J Exp Biol. 2016; doi: 10.1242/jeb.126987.
  29. Feder HH, Storey A, Goodwin SD, Reboulleau C, Silver R. Testosterone and “5α-dihydrotestosterone” levels in peripheral plasma of male and female ring Doves (Streptopelia risoria) during the reproductive cycle. Biol Reprod. 1977;16:666–77.CrossRefPubMedGoogle Scholar
  30. Fusani L, Gahr M, Hutchison JB. Aromatase inhibition reduces specifically one display of the ring dove courtship behavior. Gen Comp Endocrinol. 2001;122(1):23–30.CrossRefPubMedGoogle Scholar
  31. Gleason ED, Marler CA. Testosterone response to courtship predicts future paternal behavior in the California mouse, Peromyscus californicus. Horm Behav. 2010;57(2):147–54. doi: 10.1016/j.yhbeh.2009.10.006.CrossRefPubMedGoogle Scholar
  32. Goodson JL, Adkins-Regan E. Playback of crows of male Japanese quail elicits female phonotaxis. Condor. 1997;99:990–3.CrossRefGoogle Scholar
  33. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145(9):4073–7.CrossRefPubMedGoogle Scholar
  34. Haase B, Paulke E, Sharp PJ. Effects of seasonal and social factors on testicular activity and hormone levels in domestic pigeons. J Exp Zool. 1976;197:81–8.CrossRefPubMedGoogle Scholar
  35. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80(4):264–72.CrossRefPubMedGoogle Scholar
  36. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6.CrossRefPubMedGoogle Scholar
  37. Kriegsfeld LJ, Ubuka T, Bentley GE, Tsutsui K. Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals. Front Neuroendocrinol. 2015;37:65–75. doi: 10.1016/j.yfrne.2014.12.001.CrossRefPubMedGoogle Scholar
  38. Lambert GM, Rubin BS, Baum MJ. Sexual dimorphism in the effects of mating on the in vitro release of LHRH from the ferret mediobasal hypothalamus. Physiol Behav. 1992;52(4):809–13.CrossRefPubMedGoogle Scholar
  39. Lehrman DS. The reproductive behavior of ring doves. Sci Am. 1964;211:48–54.CrossRefPubMedGoogle Scholar
  40. Liu WC, Kohn J, Szwed SK, Pariser E, Sepe S, Haripal B, Oshimori N, Marsala M, Miyanohara A, Lee R. Human mutant huntingtin disrupts vocal learning in transgenic songbirds. Nat Neurosci. 2015;18(11):1617–22. doi: 10.1038/nn.4133.CrossRefPubMedGoogle Scholar
  41. MacDougall-Shackleton SA, Stevenson TJ, Watts HE, Pereyra ME, Hahn TP. The evolution of photoperiod response systems and seasonal GnRH plasticity in birds. Integr Comp Biol. 2009;49(5):580–9. doi: 10.1093/icb/icp048.CrossRefPubMedGoogle Scholar
  42. Maney DL, Goode CT, Lake JI, Lange HS, O’Brien S. Rapid neuroendocrine responses to auditory courtship signals. Endocrinology. 2007;148(12):5614–23. doi: 10.1210/en.2007-0879.CrossRefPubMedGoogle Scholar
  43. Mantei KE, Ramakrishnan S, Sharp PJ, Buntin JD. Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves. Horm Behav. 2008;54(5):669–75. doi: 10.1016/j.yhbeh.2008.07.005.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Maruska KP, Fernald RD. Social regulation of gene expression in the hypothalamic–pituitary–gonadal axis. Physiology (Bethesda). 2011;26(6):412–23. doi: 10.1152/physiol.00032.2011.CrossRefGoogle Scholar
  45. Meddle SL, King VM, Follett BK, Wingfield JC, Ramenofsky M, Foidart A, Balthazart J. Copulation activates Fos-like immunoreactivity in the male quail forebrain. Behav Brain Res. 1997;85(2):143–59.CrossRefPubMedGoogle Scholar
  46. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MBL, Colledge WH, Caraty A, Aparicio SAJR. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102(5):1761–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276(31):28969–75.CrossRefPubMedGoogle Scholar
  48. O’Connell M, Reboulleau C, Feder H, Silvers R. Social interactions and androgen levels in birds I. Female characteristics associated with increased plasma androgen levels in the male ring dove (Streptopelia risoria). Gen Comp Endocrinol. 1981;44:454–63.CrossRefPubMedGoogle Scholar
  49. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7.CrossRefPubMedGoogle Scholar
  50. Oliveira RF. Social modulation of androgens in vertebrates: mechanisms and function. Adv Study Behav. 2004;34:165–239.CrossRefGoogle Scholar
  51. Oliveira RF. Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol. 2009;49(4):423–40. doi: 10.1093/icb/icp055.CrossRefPubMedGoogle Scholar
  52. Ottinger MA, Bakst MR. Endocrinology of the avian reproductive system. J Avian Med Surg. 1995;9(4):242–50.Google Scholar
  53. Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol. 2012;98(2):176–96.CrossRefPubMedGoogle Scholar
  54. Pinxten R, de Ridder E, Eens M. Female presence affects male behavior and testosterone levels in the European starling (Sturnus vulgaris). Horm Behav. 2003;44(2):103–9.CrossRefPubMedGoogle Scholar
  55. Remage-Healey L, Maidment NT, Schlinger BA. Forebrain steroid levels fluctuate rapidly during social interactions. Nat Neurosci. 2008;11(11):1327–34.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Roberts TF, Gobes SM, Murugan M, Olveczky BP, Mooney R. Motor circuits are required to encode a sensory model for imitative learning. Nat Neurosci. 2012;15(10):1454–9. doi: 10.1038/nn.3206.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Scanes CG. Avian endocrine system. In: Scanes C, editor. Sturkie’s avian physiology. 6th ed. Amsterdam: Academic Press; 2015. p. 489–96.CrossRefGoogle Scholar
  58. Schlinger BA, Arnold AP. Brain is the major site of estrogen synthesis in a male songbird. Proc Natl Acad Sci U S A. 1991;88:4191–4.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JSJ, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MBL, Crowley WFJ, Aparicio SAJR, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27.CrossRefPubMedGoogle Scholar
  60. Shinomiya A, Shimmura T, Nishiwaki-Ohkawa T, Yoshimura T. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front Endocrinol (Lausanne). 2014;5:12. doi: 10.3389/fendo.2014.00012.Google Scholar
  61. Silver R, Goldsmith AR, Follett BK. Plasma luteinizing hormone in male ring doves during the breeding cycle. Gen Comp Endocrinol. 1980;42:19–24.CrossRefPubMedGoogle Scholar
  62. Steimer T, Hutchison JB. Aromatization of testosterone within a discrete hypothalamic area associated with the behavioral action of androgen in the male dove. Brain Res Bull. 1980;192:586–91.CrossRefGoogle Scholar
  63. Stevenson TJ, Ball GF. Anatomical localization of the effects of reproductive state, castration, and social milieu on cells immunoreactive for gonadotropin-releasing hormone-I in male European starlings (Sturnus vulgaris). J Comp Neurol. 2009;517:146–55.CrossRefPubMedGoogle Scholar
  64. Stevenson TJ, Hahn TP, MacDougall-Shackleton SA, Ball GF. Gonadotropin-releasing hormone plasticity: A comparative perspective. Front Neuroendocrinol. 2012;33(3):287–300. doi: 10.1016/j.yfrne.2012.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Teruyama R, Beck MM. Changes in immunoreactivity to anti-cGnRH-I and -II are associated with photostimulated sexual status in male quail. Cell Tissue Res. 2000;300(3):413–26.CrossRefPubMedGoogle Scholar
  66. Tobari Y, Iijima N, Tsunekawa K, Osugi T, Okanoya K, Tsutsui K, Ozawa H. Identification of gonadotropin-inhibitory hormone in the zebra finch (Taeniopygia guttata): Peptide isolation, cDNA cloning and brain distribution. Peptides. 2010;31:816–26.CrossRefPubMedGoogle Scholar
  67. Tobari Y, Son YL, Ubuka T, Hasegawa Y, Tsutsui K. A new pathway mediating social effects on the endocrine system: female presence acting via norepinephrine release stimulates gonadotropin-inhibitory hormone in the paraventricular nucleus and suppresses luteinizing hormone in quail. J Neurosci. 2014;34(29):9803–11. doi: 10.1523/JNEUROSCI.3706-13.2014.CrossRefPubMedGoogle Scholar
  68. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000;275(2):661–7.CrossRefPubMedGoogle Scholar
  69. Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ. Contribution of GnIH research to the progress of reproductive neuroendocrinology. Front Endocrinol (Lausanne). 2015;6:179. doi: 10.3389/fendo.2015.00179.Google Scholar
  70. Ubuka T, Ueno M, Ukena K, Tsutsui K. Developmental changes in gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica) hypothalamo–hypophysial system. J Endocrinol. 2003;178(2):311–8.CrossRefPubMedGoogle Scholar
  71. Ubuka T, Bentley GE, Ukena K, Wingfield JC, Tsutsui K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc Natl Acad Sci U S A. 2005;102(8):3052–7. doi: 10.1073/pnas.0403840102.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ubuka T, Kim S, Huang YC, Reid J, Jiang J, Osugi T, Chowdhury VS, Tsutsui K, Bentley GE. Gonadotropin-inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology. 2008;149(1):268–78.CrossRefPubMedGoogle Scholar
  73. Ukena K, Ubuka T, Tsutsui K. Distribution of a novel avian gonadotropin-inhibitory hormone in the quail brain. Cell Tissue Res. 2003;312(1):73–9.PubMedGoogle Scholar
  74. Ullrich R, Norton P, Scharff C. Waltzing Taeniopygia: integration of courtship song and dance in the domesticated Australian zebra finch. Anim Behav. 2016;112:285–300.CrossRefGoogle Scholar
  75. Um HN, Han JM, Hwang JI, Hong SI, Vaudry H, Seong JY. Molecular coevolution of kisspeptins and their receptors from fish to mammals. Ann N Y Acad Sci. 2010;1200:67–74. doi: 10.1111/j.1749-6632.2010.05508.x.CrossRefPubMedGoogle Scholar
  76. Wade J. Zebra finch sexual differentiation: the aromatization hypothesis revisited. Microsc Res Tech. 2001;54:354–63.CrossRefPubMedGoogle Scholar
  77. Watson JT, Adkins-Regan E. Testosterone implanted in the preoptic area of male Japanese quail must be aromatized to activate copulation. Horm Behav. 1989;23(3):432–47.CrossRefPubMedGoogle Scholar
  78. Wingfield JC. Environmental and endocrine control of reproduction: an ecological approach. In: Mikami S, Homma K, Wada M, editors. Avian endocrinology. Tokyo: Japan Scientific Societies Press; 1983. p. 265–88.Google Scholar
  79. Yin H, Ukena K, Ubuka T, Tsutsui K. A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): identification, expression and binding activity. J Endocrinol. 2005;184(1):257–66. doi: 10.1677/joe.1.05926.CrossRefPubMedGoogle Scholar
  80. Youngren O, Chaiseha Y, Phillips R, El Halawani M. Vasoactive intestinal peptide concentrations in turkey hypophysial portal blood differ across the reproductive cycle. Gen Comp Endocrinol. 1996;103:323–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Animal Genetics and Breeding, Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
  2. 2.Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations