Skip to main content

Molecular and Neuroendocrine Mechanisms of Avian Seasonal Reproduction

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1001)

Abstract

Animals living outside tropical zones experience seasonal changes in the environment and accordingly, adapt their physiology and behavior in reproduction, molting, and migration. Subtropical birds are excellent models for the study of seasonal reproduction because of their rapid and dramatic response to changes in photoperiod. For example, testicular weight typically changes by more than a 100-fold. In birds, the eyes are not necessary for seasonal reproduction, and light is instead perceived by deep brain photoreceptors. Functional genomic analysis has revealed that long day (LD)-induced thyrotropin from the pars tuberalis of the pituitary gland causes local thyroid hormone (TH) activation within the mediobasal hypothalamus. This local bioactive TH, triiodothyronine (T3), appears to regulate seasonal gonadotropin-releasing hormone (GnRH) secretion through morphological changes in neuro-glial interactions. GnRH, in turn, stimulates gonadotropin secretion and hence, gonadal development under LD conditions. In marked contrast, low temperatures accelerate short day (SD)-induced testicular regression in winter. Interestingly, low temperatures increase circulating levels of T3 to support adaptive thermogenesis, but this induction of T3 also triggers the apoptosis of germ cells by activating genes involved in metamorphosis. This apparent contradiction in the role of TH has recently been clarified. Central activation of TH during spring results in testicular growth, while peripheral activation of TH during winter regulates adaptive thermogenesis and testicular regression.

Keywords

  • Photoperiodism
  • Circadian rhythm
  • Mediobasal hypothalamus
  • Pars tuberalis
  • Thyrotropin
  • Thyroid hormone
  • Deep brain photoreceptor
  • Opsin

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-3975-1_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-3975-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4

References

  • Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002;13:215–20.

    CAS  CrossRef  PubMed  Google Scholar 

  • Bailey MJ, Cassone VM. Melanopsin expression in the chick retina and pineal gland. Brain Res Mol Brain Res. 2005;134:345–8.

    CAS  CrossRef  PubMed  Google Scholar 

  • Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002;309:193–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Benoit J. Le role des yeux dans l’action stimulante de la lumière sur le developpement testiculaire chez le canard. C R Soc Biol (Paris). 1935;118:669–71.

    Google Scholar 

  • Bernal J. Action of thyroid hormone in brain. J Endocrinol Invest. 2002;25:268–88.

    CAS  CrossRef  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.

    CAS  CrossRef  PubMed  Google Scholar 

  • Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem. 2005;92:158–70.

    CAS  CrossRef  PubMed  Google Scholar 

  • Davies DT, Follett BK. The neuroendocrine control of gonadotrophin release in the Japanese quail. II. The role of the anterior hypothalamus. Proc R Soc Lond B. 1975;191:303–15.

    CAS  CrossRef  PubMed  Google Scholar 

  • Davies WI, Turton M, Peirson SN, Follett BK, Halford S, Garcia-Fernandez JM, Sharp PJ, Hankins MW, Foster RG. Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biol Lett. 2012;8:291–4.

    CrossRef  PubMed  Google Scholar 

  • Dawson A, King VM, Bentley GE, Ball GF. Photoperiodic control of seasonality in birds. J Biol Rhythms. 2001;16:365–80.

    CAS  CrossRef  PubMed  Google Scholar 

  • Ebihara S, Kawamura H. The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. J Comp Physiol A. 1981;141:207–14.

    CrossRef  Google Scholar 

  • Follett BK, Maung SL. Rate of testicular maturation, in relation to gonadotrophin and testosterone levels, in quail exposed to various artificial photoperiods and to natural daylengths. J Endocrinol. 1978;78:267–80.

    CAS  CrossRef  PubMed  Google Scholar 

  • Follett BK, Sharp PJ. Circadian rhythmicity in photoperiodically induced gonadotrophin release and gonadal growth in the quail. Nature. 1969;223:968–71.

    CAS  CrossRef  PubMed  Google Scholar 

  • Follett BK, King VM, Meddle SL. Rhythms and photoperiodism in birds. In: Lumsden PJ, Miller AJ, editors. Biological rhythms and photoperiodism in plants. Oxford: Biostatistics Scientific; 1998. p. 231–42.

    Google Scholar 

  • Foster RG, Follett BK. The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail. J Comp Physiol A. 1985;157:519–28.

    CAS  CrossRef  Google Scholar 

  • Foster RG, Follett BK, Lythgoe JN. Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail. Nature. 1985;313:50–2.

    CAS  CrossRef  PubMed  Google Scholar 

  • Foster RG, Korf HW, Schalken JJ. Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail. Cell Tissue Res. 1987;248:161–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • Furlow JD, Neff ES. A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrionol Metab. 2006;17:40–7.

    CrossRef  Google Scholar 

  • Garner WW, Allard HA. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res. 1920;18:553–606.

    Google Scholar 

  • Gwinner E, Hau H, Heigl S. Melatonin: generation and modification of avian circadian rhythms. Brain Res Bull. 1997;44:439–44.

    CAS  CrossRef  PubMed  Google Scholar 

  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Eur J Physiol. 2004;447:653–65.

    CAS  CrossRef  Google Scholar 

  • Hahn TP, MacDougall-Shackleton SA. Adaptive specialization, conditional plasticity and phylogenetic history in the reproductive cue response systems of birds. Philos Trans R Soc B. 2008;363:267–86.

    CrossRef  Google Scholar 

  • Halford S, Pires SS, Turton M, Zheng L, Gonzalez-Menendez I, Davies WL, Peirson SN, Garcia-Fernandez JM, Hankins MW, Foster RG. VA opsin-based photoreceptors in the hypothalamus of birds. Curr Biol. 2009;19:1396–402.

    CAS  CrossRef  PubMed  Google Scholar 

  • Homma K, Ohta M, Sakakibara Y. Photoinducible phase of the Japanese quail detected by direct stimulation of the brain. In: Suda M, Hayaishi O, Nakagawa H, editors. Biological rhythms and their central mechanism. Amsterdam: Elsevier; 1979. p. 85–94.

    Google Scholar 

  • Ikegami K, Katou Y, Higashi K, Yoshimura T. Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. J Comp Neurol. 2009;517:397–404.

    CAS  CrossRef  PubMed  Google Scholar 

  • Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T. Tissue-specific post-translational modification allows functional targeting of thyrotropin. Cell Rep. 2014;9:1–9.

    CrossRef  Google Scholar 

  • Ikegami K, Atsumi Y, Yorinaga E, Ono H, Murayama I, Nakane Y, Ota W, Arai N, Tega A, Iigo M, Darras VM, Tsutsui K, Hayashi Y, Yoshida S, Yoshimura T. Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression. Endocrinology. 2015;156:647–59.

    CrossRef  PubMed  Google Scholar 

  • Juss TS, Meddle SL, Servant RS, King VM. Melatonin and photoperiodic time measurement in Japanese quail (Coturnix coturnix japonica). Proc R Soc Lond B Biol Sci. 1993;254:21–8.

    CAS  CrossRef  Google Scholar 

  • Kang SW, Leclerc B, Kosonsiriluk S, Mauro LJ, Iwasawa A, El Halawani ME. Melanopsin expression in dopamine–melatonin neurons of the premammillary nucleus of the hypothalamus and seasonal reproduction in birds. Neuroscience. 2010;170:200–13.

    CAS  CrossRef  PubMed  Google Scholar 

  • Konishi H, Foster RG, Follett BK. Evidence for a daily rhythmicity in the acute release of LH in response to electrical stimulation in the Japanese quail. J Comp Physiol A Sens Neural Behav Physiol. 1987;161:315–9.

    CAS  CrossRef  Google Scholar 

  • Lamb TD. Evolution of vertebrate retinal photoreception. Phil Trans R Soc B. 2009;364:2911–24.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lofts B, Murton RK, Westwood NJ. Photoresponses of the Woodpigeon Columba palumbus in relation to the breeding season. Ibis. 1967;109:338–51.

    CrossRef  Google Scholar 

  • MacDougall-Shackleton SA, Stevenson TJ, Watts HE, Pereyra ME, Hahn TP. The evolution of photoperiod response systems and seasonal GnRH plasticity in birds. Integr Comp Biol. 2009;49:580–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Marcovitch S. Plant lice and light exposure. Science. 1923;58:537–8.

    CAS  CrossRef  PubMed  Google Scholar 

  • Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science. 1995;267:1502–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Meddle SL, Follett BK. Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail. J Neurosci. 1997;17:8909–18.

    CAS  PubMed  Google Scholar 

  • Menaker M. Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc Natl Acad Sci U S A. 1968;59:414–21.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Menaker M, Roberts R, Elliott J, Underwood H. Extraretinal light perception in the sparrow. III. The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci U S A. 1970;67:320–5.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nakane Y, Yoshimura T. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci. 2014;8:115.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nakane Y, Ikegami K, Ono H, Yamamoto N, Yoshida S, Hirunagi K, Ebihara S, Kubo Y, Yoshimura T. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci U S A. 2010;107:15264–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Azuma T, Amano M, Abe H, Yamamoto N, Yoshimura T. The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun. 2013;4:2108.

    CrossRef  PubMed  Google Scholar 

  • Nakane Y, Shimmura T, Abe H, Yoshimura T. Intrisic photosensitivity of a deep brain photoreceptor. Curr Biol. 2014;24:R596–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • Nakao N, Takagi T, Iigo M, Tsukamoto T, Yasuo S, Masuda T, Yanagisawa T, Ebihara S, Yoshimura T. Possible involvement of organic anion transporting polypeptide 1c1 in the photoperiodic response of gonads in birds. Endocrinology. 2006;147:1067–73.

    CAS  CrossRef  PubMed  Google Scholar 

  • Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature. 2008;452:317–22.

    CAS  CrossRef  PubMed  Google Scholar 

  • Nicholls TJ, Follett BK, Robinson JE. A photoperiodic response in gonadectomized Japanese quail exposed to a single long day. J Endocrinol. 1983;97:121–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Nicholls TJ, Goldsmith AR, Dawson A. Photorefractoriness in birds and comparison with mammals. Physiol Rev. 1988;68:133–76.

    CAS  PubMed  Google Scholar 

  • Oishi T, Konishi T. Effects of photoperiod and temperature on testicular and thyroid activity of the Japanese quail. Gen Comp Endocrinol. 1978;36:250–4.

    CAS  CrossRef  PubMed  Google Scholar 

  • Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994;372:94–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • Oliver J, Bayle JD. Brain photoreceptors for the photoinduced testicular response in birds. Experientia. 1982;38:1020–9.

    CrossRef  Google Scholar 

  • Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A. 2008;105:18238–42.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ono H, Nakao N, Yamamura T, Kinoshita K, Mizutami M, Namikawa T, Iigo M, Ebihara S, Yoshimura T. Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction. Anim Sci J. 2009;80:328–32.

    CAS  CrossRef  PubMed  Google Scholar 

  • Pearce EN. Thyroid hormone and obesity. Curr Opin Endocrinol Diabetes Obes. 2012;19:408–13.

    CAS  CrossRef  PubMed  Google Scholar 

  • Perfito N, Jeong SY, Silverin B, Calisi RM, Bentley GE, Hau M. Anticipating spring: wild populations of great tits (Parus major) differ in expression of key genes for photoperiodic time measurement. PLoS One. 2012;7:e34997.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience. 1999;94:809–19.

    CAS  CrossRef  PubMed  Google Scholar 

  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

    CAS  CrossRef  PubMed  Google Scholar 

  • Rowan W. Relation of light to bird migration and developmental changes. Nature. 1925;115:494–5.

    CrossRef  Google Scholar 

  • Sharp PJ, Follett BK. The effect of hypothalamic lesions on gonadotrophin release in Japanese quail (Coturnix coturnix japonica). Neuroendocrinol. 1969;5:205–18.

    CAS  CrossRef  Google Scholar 

  • Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol Rev. 2006;86:435–64.

    CAS  CrossRef  PubMed  Google Scholar 

  • Silver R, Witkovsky P, Horvath P, Alones V, Barnstable CJ, Lehman MN. Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell Tissue Res. 1988;253:189–98.

    CAS  CrossRef  PubMed  Google Scholar 

  • Siopes TD, Wilson WO. Extraocular modification of photoreception in intact and pinealectomized coturnix. Poult Sci. 1974;53:2035–41.

    CAS  CrossRef  PubMed  Google Scholar 

  • Steele CT, Zivkovic BD, Siopes T, Underwood H. Ocular clocks are tightly coupled and act as pacemakers in the circadian system of Japanese quail. Am J Physiol Regul Integr Comp Physiol. 2003;284:R208–18.

    CAS  CrossRef  PubMed  Google Scholar 

  • Stevenson TJ, Ball GF. Disruption of neuropsin mRNA expression via RNA interference facilitates the photoinduced increase in thyrotropin-stimulating subunit β in birds. Eur J Neurosci. 2012;36:2859–65.

    CrossRef  PubMed  Google Scholar 

  • Stevenson TJ, Hahn TP, MacDougall-Shackleton SA, Ball GF. Gonadotropin-releasing hormone plasticity: a comparative perspective. Front Neuroendocrionol. 2012;33:287–300.

    CAS  CrossRef  Google Scholar 

  • Takahashi JS, Menaker M. Role of the suprachiasmatic nucleus in the circadian system of the house sparrow. J Neurosci. 1982;2:815–28.

    CAS  PubMed  Google Scholar 

  • Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett. 2003;554:410–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tomonari S, Takagi A, Akamatsu S, Noji S, Ohuchi H. A non-canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina. Dev Dyn. 2005;234:783–90.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tomonari S, Takagi A, Noji S, Ohuchi H. Expression pattern of the melanopsin-like (cOpn4m) and VA opsin-like genes in the developing chicken retina and neural tissues. Gene Expr Patterns. 2007;7:746–53.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000;275:661–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • Ubuka T, Bentley GE, Ukena K, Wingfield JC, Tsutsui K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc Natl Acad Sci U S A. 2005;102:3052–7.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ubuka T, Ukena K, Sharp PJ, Bentley GE, Tsutsui K. Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail. Endocrinology. 2006;147:1187–94.

    CAS  CrossRef  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I. Actual problems of the cerebrospinal fluid-contacting neurons. Microsc Res Tech. 1998;41:57–83.

    CAS  CrossRef  PubMed  Google Scholar 

  • von Frisch K. Beitrage zur Physiologie der Pigmentzellen in der Fischhaut. Pfluger’s Archiv fűr die Gesamte Physiologie des Menschen und der Tiere. 1911;138:319–87.

    CrossRef  Google Scholar 

  • Wada M. Low temperature and short days together induce thyroid activation and suppression of LH release in Japanese quail. Gen Comp Endocrinol. 1993;90:355–63.

    CAS  CrossRef  PubMed  Google Scholar 

  • Wada Y, Okano T, Adachi A, Ebihara S, Fukada Y. Identification of rhodopsin in the pigeon deep brain. FEBS Lett. 1998;424:53–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T. Hypothalamic expression of thyroid hormone-activating and -inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol. 2007;292:R568–72.

    CAS  CrossRef  PubMed  Google Scholar 

  • Waung JA, Bassett JH, Williams GR. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab. 2012;23:155–62.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamamura T, Hirunagi K, Ebihara S, Yoshimura T. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology. 2004;145:4264–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T. T3 implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res. 2006;324:175–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A. 2010;107:22084–9.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288:682–5.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T. Circadian clock genes and photoperiodism: comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules. Endocrinology. 2003;144:3742–8.

    CrossRef  PubMed  Google Scholar 

  • Yasuo S, Watanabe M, Nakao N, Takagi T, Follett BK, Ebihara S, Yoshimura T. The reciprocal switching of two thyroid hormone-activating and -inactivating enzyme genes is involved in the photoperiodic gonadal response of Japanese quail. Endocrinology. 2005;146:2551–4.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yasuo S, Yoshimura T, Ebihara S, Kolf HW. Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci. 2009;29:2885–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S. Identification of the suprachiasmatic nucleus in birds. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1185–9.

    CAS  PubMed  Google Scholar 

  • Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature. 2003;426:178–81.

    CAS  CrossRef  PubMed  Google Scholar 

  • Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001;2:702–15.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tamai, T.K., Yoshimura, T. (2017). Molecular and Neuroendocrine Mechanisms of Avian Seasonal Reproduction. In: Sasanami, T. (eds) Avian Reproduction. Advances in Experimental Medicine and Biology, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-10-3975-1_8

Download citation