Skip to main content

Avian Biotechnology

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1001)

Abstract

Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene “pharming” as well as gene banking.

Keywords

  • Artificial insemination
  • Chickens
  • Embryo culture
  • Cryopreservation
  • Genetic modification
  • Gemline chimeras
  • Poultry
  • Primordial germ cells
  • Transplantation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-3975-1_12
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-3975-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6

References

  • Aige-Gil V, Simkiss K. Sterilisation of avian embryos with busulphan. Res Vet Sci. 1991;50:139–44.

    CAS  PubMed  CrossRef  Google Scholar 

  • Alexander A, Graham J, Hammerstedt RH, et al. Effect of genotype and cryopreservation of avian semen on fertility and number of perivitelline spermatozoa. Br Poultry Sci. 1993;34:757–64.

    CAS  CrossRef  Google Scholar 

  • Aoyama H, Asamoto K, Nojyo Y, et al. Monoclonal antibodies specific to quail embryo tissues: their epitopes in the developing quail embryo and their application to identification of quail cells in quail-chicken chimeras. J Histochem Cytochem. 1992;40:1769–77.

    CAS  PubMed  CrossRef  Google Scholar 

  • Blanco JM, Gee G, Wildt DE, et al. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol Reprod. 2000;63:1164–71.

    CAS  PubMed  CrossRef  Google Scholar 

  • Blesbois E, Grasseau I, Seigneurin F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction. 2005;129:371–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Bosselman RA, Hsu RY, Boggs T, et al. Germline transmission of exogenous genes in the chicken. Science. 1989;243:533–5.

    CAS  PubMed  CrossRef  Google Scholar 

  • Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994;91:11303–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA. 1994;91:11298–302.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Carsience RS, Clark ME, Verrinder Gibbins AM, et al. Germline chimeric chickens from dispersed donor blastodermal cells and compromised recipient embryos. Development. 1993;117:669–75.

    CAS  PubMed  Google Scholar 

  • Catzeflis FM, Dickerman AW, Michaux J, et al. DNA hybridization and rodent phylogeny. In: Szalay FS, Novacek MJ, McKenna MC, editors. Mammal phylogeny (placentals), vol. 2. New York: Springer Verlag; 1993. p. 159–72.

    CrossRef  Google Scholar 

  • Chalah T, Seigneurin F, Blesbois E, et al. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology. 1999;39:185–91.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen HY, Garber EA, Mills E, et al. Vectors, promoters, and expression of genes in chick embryos. J Reprod Fertil. 1990;41:173–82.

    CAS  Google Scholar 

  • Clouthier DE, Avarbock MR, Maika SD, et al. Rat spermatogenesis in mouse testis. Nature. 1996;381:418–21.

    Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod. 1999;61:1331–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL. Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev. 2000;57:270–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Du SJ, Gong ZY, Fletcher GL, et al. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology. 1992;10:176–81.

    CAS  PubMed  Google Scholar 

  • Eyal-Giladi H, Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol. 1976;49:321–37.

    CAS  PubMed  CrossRef  Google Scholar 

  • FAO. Secondary guidelines for development of national farm animal genetic resources management plans: management of small populations at risk. UNEP: Nairobi, Kenya; 1998, pp. 1–210.

    Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA. 1980;77:7380–4.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hanzawa S, Niinomi T, Miyata T, et al. Cryopreservation of chicken semen using n-methylacetamide as cryoprotective agent. Nippon Kakin Gakkaishi (Jpn J Poult Sci). 2010;47:J27–32. (in Japanese)

    CAS  Google Scholar 

  • Harvey AJ, Speksnijder G, Baugh LR, et al. Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol. 2002;20:396–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hermann BP, Sukhwani M, Winkler F, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715–26.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Honaramooz A, Megee SO, Dobrinski I. Germ cell transplantation in pig. Biol Reprod. 2002;66:21–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Honaramooz A, Behboodi E, Blash S, et al. Germ cell transplantation in goats. Mol Reprod Dev. 2003;64:422–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Izadyar F, Den Ouden K, Stout TA, et al. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction. 2003;126:765–74.

    CAS  PubMed  CrossRef  Google Scholar 

  • Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA. 1976;73:1260–4.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jung JG, Lee YM, Kim JN, et al. The reversible developmental unipotency of germ cells in chicken. Reproduction. 2010;139:113–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kagami H, Tagami T, Matsubara Y, et al. The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol Reprod Dev. 1997;48:501–10.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kamihira M, Oguchi S, Tachibana A, et al. Improved hatching for in vitro quail embryo culture using surrogate eggshell and artificial vessel. Dev Growth Differ. 1998;40:449–55.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kamihira M, Ono K, Esaka K, et al. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol. 2005;79:10864–74.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Miki H, et al. Clonal origin of germ cell colonies after spermatogonial transplantation in mice. Biol Reprod. 2006;75:68–74.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kang SJ, Choi JW, Kim SY, et al. Reproduction of wild birds via interspecies germ cell transplantation. Biol Reprod. 2008;79:931–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kang KS, Park TS, Rengaraj D, et al. Fertilisation of cryopreserved sperm and unfertilised quail ovum by intracytoplasmic sperm injection. Reprod Fertil Dev. 2016;28:1974–1981.

    Google Scholar 

  • Karagenç L, Cinnamon Y, Ginsburg M, et al. Origin of primordial germ cells in the prestreak chick embryo. Dev Genet. 1996;19:290–301.

    PubMed  CrossRef  Google Scholar 

  • Kato A, Miyahara D, Kagami H, et al. Culture system for bobwhite quail embryos from the blastoderm stage to hatc hing. J Poult Sci. 2013;50:155–8.

    Google Scholar 

  • Kohara Y, Kanai Y, Tajima A. Cryopreservation of gonadal germ cells (GGCs) from the domestic chicken using vitrification. J Poult Sci. 2008;45:57–61.

    CrossRef  Google Scholar 

  • Lake PE, Ravie O, McAdam J. Preservation of fowl semen in liquid nitrogen: application to breeding programmes. Br Poult Sci. 1981;22:71–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lillico SG, Sherman A, McGrew MJ, et al. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA. 2007;104:1771–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lin M, Thorne MH, Martin IC, Scheldon BL, Jones RC. Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reprod fertil Dev. 1995;7:1185–97.

    Google Scholar 

  • Liu CH, Chang IK, Sasse J, et al. Xenogenic oogenesis of chicken (Gallus domesticus) female primordial germ cells in germline chimeric quail (Coturnix japonica) ovary. Anim Reprod Sci. 2007;101:344–50.

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu J, Song Y, Cheng KM, et al. Production of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Coturnix japonica). Biol Reprod. 2010;83:15–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu C, Khazanehdari KA, Baskar V, et al. Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer. Biol Reprod. 2012;86:1–8.

    Google Scholar 

  • Love J, Gribbin C, Mather C, et al. Transgenic birds by DNA microinjection. Biotechnology. 1994;12:60–3.

    CAS  PubMed  Google Scholar 

  • Lyall J, Irvine RM, Sherman A, et al. Suppression of avian influenza transmission in genetically modified chickens. Science. 2011;331:223–6.

    CAS  PubMed  CrossRef  Google Scholar 

  • Macdonald J, Taylor L, Sherman A, et al. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA. 2012;109:E1466–72.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mak SS, Wrabel A, Nagai H, et al. Zebra finch as a developmental model. Genesis. 2015;53:669–77.

    PubMed  CrossRef  Google Scholar 

  • McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997;94:12457–61.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.

    CAS  PubMed  CrossRef  Google Scholar 

  • Minvielle F, Gourichon D, Monvoisin JL. Testing homology of loci for two plumage colors, “lavender” and “recessive white,” with chicken and Japanese quail hybrids. J Hered. 2002;93:73–6.

    CAS  PubMed  CrossRef  Google Scholar 

  • Miyahara D, Oishi I, Makino R, et al. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. J Reprod Dev. 2016;62:143–9.

    Google Scholar 

  • Mizushima S, Hiyama G, Shiba K, et al. The birth of quail chicks after intracytoplasmic sperm injection. Development. 2014;141:3799–806.

    CAS  PubMed  CrossRef  Google Scholar 

  • Mocé E, Grasseau I, Blesbois E. Cryoprotectant and freezing-process alter the ability of chicken sperm to acrosome react. Anim Reprod Sci. 2010;122:359–66.

    PubMed  CrossRef  CAS  Google Scholar 

  • Moore DT, Purdy PH, Blackburn HD. A method for cryopreserving chicken primordial germ cells. Poult Sci. 2006;85:1784–90.

    CAS  PubMed  CrossRef  Google Scholar 

  • Mosher DS, Quignon P, Bustamante CD, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3:e79.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Motono M, Yamada Y, Hattori Y, et al. Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector. J Biosci Bioeng. 2010;109:315–21.

    CAS  PubMed  CrossRef  Google Scholar 

  • Mozdziak PE, Wysocki R, Angerman-Stewart J, et al. Production of chick germline chimeras from fluorescence-activated cell-sorted gonocytes. Poult Sci. 2006;85:1764–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78:1225–33.

    PubMed  CrossRef  Google Scholar 

  • Naito M, Nirasawa K, Oishi T. Development in culture of the chick embryo from fertilized ovum to hatching. J Exp Zool. 1990;254:322–6.

    CAS  PubMed  CrossRef  Google Scholar 

  • Naito M, Tajima A, Tagami T, et al. Preservation of chick primordial germ cells in liquid nitrogen and subsequent production of viable offspring. J Reprod Fertil. 1994a;102:321–5.

    CAS  PubMed  CrossRef  Google Scholar 

  • Naito M, Tajima A, Yasuda Y, et al. Production of germline chimeric chickens, with high transmission rate of donor–derived gametes, produced by transfer of primordial germ cells. Mol Reprod Dev. 1994b;39:153–61.

    CAS  PubMed  CrossRef  Google Scholar 

  • Naito M, Matsubara Y, Harumi T, et al. Differentiation of donor primordial germ cells into functional gametes in the gonads of mixed-sex germline chimaeric chickens produced by transfer of primordial germ cells isolated from embryonic blood. J Reprod Fertil. 1999;117:291–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Naito M, Minematsu T, Harumi T, et al. Testicular and ovarian gonocytes from 20-day incubated chicken embryos contribute to germline lineage after transfer into bloodstream of recipient embryos. Reproduction. 2007;134:577–84.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakajima Y, Minematsu T, Naito M, et al. A new method for isolating viable gonadal germ cells from 7-day-old chick embryos. J Poult Sci. 2011;48:106–11.

    CrossRef  Google Scholar 

  • Nakajima Y, Hattori T, Asano A, et al. Migration and differentiation of gonadal germ cells under cross-sex germline chimeras condition in domestic chickens. J Reprod Dev. 2014;60:406–10.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nakamura Y. Poultry genetic resource conservation using primordial germ cells. J Reprod Dev. 2016;62(5):431–7. (Published online)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nakamura Y, Yamamoto Y, Usui F, et al. Migration and proliferation of primordial germ cells in the early chicken embryo. Poult Sci. 2007;86:2182–93.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Yamamoto Y, Usui F, et al. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chicken. Reprod Fertil Dev. 2008;20:900–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Usui F, Ono T, et al. Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken. Biol Reprod. 2010a;83:130–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Usui F, Miyahara D, et al. Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (Gifujidori). Reprod Fertil Dev. 2010b;22:1237–46.

    PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Usui F, Miyahara D, et al. Viability and functionality of primordial germ cells after freeze-thaw in chickens. J Poult Sci. 2011;48:57–63.

    CrossRef  Google Scholar 

  • Nakamura Y, Usui F, Miyahara D, et al. X-irradiation removes endogenous primordial germ cells (PGCs) and increases germline transmission of donor PGCs in chimeric chickens. J Reprod Dev. 2012;58:432–7.

    PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Kagami H, Tagami T. Development, differentiation and manipulation of chicken germ cells. Dev Growth Differ. 2013a;55:20–40.

    PubMed  CrossRef  Google Scholar 

  • Nakamura Y, Tasai M, Takeda K, et al. Production of functional gametes from cryopreserved primordial germ cells of the Japanese quail. J Reprod Dev. 2013b;59:580–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nakamura Y, Rikimaru K, Takahashi D, et al. Production of functional gametes following transfer of frozen-thawed primordial germ cells of Hinai-dori fowl after long distance transportation for diversification of the risk to outbreaks of highly pathogenic avian influenza. Nippon Kakin Gakkaishi (Jpn J Poult Sci). 2016;53:J7–J14. (In Japanese)

    Google Scholar 

  • Nandi S, Whyte J, Taylor L, et al. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poult Sci. 2016;95:1905–11.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ogawa T, Dobrinski I, Avarbock MR, et al. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol Reprod. 1999;60:515–21.

    CAS  PubMed  CrossRef  Google Scholar 

  • Oishi I. Improvement of transfection efficiency in cultured chicken primordial germ cells by Percoll density gradient centrifugation. Biosci Biotechnol Biochem. 2010;74:2426–30.

    CAS  PubMed  CrossRef  Google Scholar 

  • Oishi I, Yoshii K, Miyahara D, et al. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci Rep. 2016;6:23980.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Okutsu T, Suzuki K, Takeuchi Y, et al. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA. 2006;103:2725–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Okutsu T, Shikina S, Kanno M, et al. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ono T, Machida Y. Immunomagnetic purification of viable primordial germ cells of Japanese quail (Coturnix japonica). Comp Biochem Physiol A Mol Integr Physiol. 1999;122:255–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ono T, Murakami T, Mochii M, et al. A complete culture system for avian transgenesis, supporting quail embryos from the single-cell stage to hatching. Dev Biol. 1994;161:126–30.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ono T, Nakane Y, Wadayama T, Tsudzuki M, Arisawa K, Ninomiya S, Suzuki T, Mizutani M, Kagami H. Culture system for embryos of blue-breasted quail from the blastoderm stage to hatching. Exp Anim. 2005;54:7–11.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pain B, Clark ME, Shen M, et al. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development. 1996;122:2339–48.

    CAS  PubMed  Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982;300:611–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park TS, Han JY. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA. 2012;109:9337–41.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park TS, Lee HJ, Kim KH, et al. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci USA. 2014;111:12716–21.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Peláez J, Bongalhardo DC, Long JA. Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates. Poult Sci. 2011;90:435–43.

    PubMed  CrossRef  CAS  Google Scholar 

  • Perry MM. A complete culture system for the chick embryo. Nature. 1988;331:70–2.

    CAS  PubMed  CrossRef  Google Scholar 

  • Petitte JN, Clark ME, Liu G, et al. Production of somatic and germline chimeras in the chicken by transfer of blastodermal cells. Development. 1990;108:185–9.

    CAS  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164:666.

    CAS  PubMed  CrossRef  Google Scholar 

  • Raju TS, Briggs JB, Borge SM, et al. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology. 2000;10:477–86.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rao S, Fujimura T, Matsunari H, et al. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev. 2016;83:61–70.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rapp JC, Harvey AJ, Speksnijder GL, et al. Biologically active human interferon alpha-2b produced in the egg white of transgenic hens. Transgenic Res. 2003;12:569–75.

    CAS  PubMed  CrossRef  Google Scholar 

  • Reynaud G. Transfert de cellules germinales primordiales de Dindon à l’embryon de Poulet par injection intravasculaire. [The transfer of Turkey primordial germ cells to chick embryos by intravascular injection]. J Embryol Exp Morphol. 1969;21:485–507.

    CAS  PubMed  Google Scholar 

  • Robertson GAG. Ovarian transplantation in the house mouse. Proc Soc Exp Biol Med. 1940;44:302–4.

    CrossRef  Google Scholar 

  • Saito T, Goto-Kazeto R, Arai K, et al. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod. 2008;78:159–66.

    CAS  PubMed  CrossRef  Google Scholar 

  • Salter DW, Smith EJ, Hughes SH, et al. Gene insertion into the chicken germ line by retroviruses. Poult Sci. 1986;65:1445–58.

    CAS  PubMed  CrossRef  Google Scholar 

  • Sawicka D, Chojnacka-Puchta L, Zielinski M, et al. Flow cytometric analysis of apoptosis in cryoconserved chicken primordial germ cells. Cell Mol Biol Lett. 2015;20:143–59.

    CAS  PubMed  CrossRef  Google Scholar 

  • Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350:2682–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Schusser B, Collarini EJ, Yi H, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci USA. 2013;110:20170–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Setioko AR, Tagami T, Tase H, et al. Cryopreservation of primordial germ cells (PGCs) from White Leghorn embryos using commercial cryoprotectants. J Poult Sci. 2007;44:73–7.

    CrossRef  Google Scholar 

  • Silversides FG, Mérat P. Homology of the s+ locus in the chicken with Al+ in the Japanese quail. J Hered. 1991;82:245–7.

    Google Scholar 

  • Smith CA, Roeszler KN, Bowles J, et al. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol. 2008;8:85.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Snow M, Cox SL, Jenkin G, et al. Generation of live young from xenografted mouse ovaries. Science. 2002;297:2227.

    CAS  PubMed  CrossRef  Google Scholar 

  • Song Y, Silversides FG. The technique of orthotropic ovarian transplantation in the chicken. Poult Sci. 2006;85:1104–6.

    CAS  PubMed  CrossRef  Google Scholar 

  • Song Y, Silversides FG. Heterotopic transplantation of testes in newly hatched chickens and subsequent production of offspring via intramagnal insemination. Biol Reprod. 2007;76:598–603.

    CAS  PubMed  CrossRef  Google Scholar 

  • Song Y, Silversides FG. Transplantation of ovaries in Japanese quail (Coturnix japonica). Anim Reprod Sci. 2008;105:430–7.

    PubMed  CrossRef  Google Scholar 

  • Song Y, Cheng KM, Robertson MC, et al. Production of donor-derived offspring after ovarian transplantation between Muscovy (Cairina moschata) and Pekin (Anas platyrhynchos) ducks. Poult Sci. 2012;91:197–200.

    CAS  PubMed  CrossRef  Google Scholar 

  • Speksnijder G, Ivarie R. A modified method of shell windowing for producing somatic or germline chimeras in fertilized chicken eggs. Poult Sci. 2000;79:1430–3.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tagami T, Kagami H, Matsubara Y, Harumi T, Naito M, Takeda K, Hanada H, Nirasawa K. Differentiation of female primordial germ cells in the male testes of chicken (Gallus gallus domesticus). Molecular Reproduction and Development. 2007;74(1):68–75.

    Google Scholar 

  • Tahara Y, Obara K. A novel shell-less culture system for chick embryos using a plastic film as culture vessels. J Poult Sci. 2014;51:307–12.

    CrossRef  Google Scholar 

  • Tajima A, Naito M, Yasuda Y, et al. Production of germline chimeras by transfer of cryopreserved gonadal primordial germ cells (gPGCs) in chicken. J Exp Zool. 1998;280:265–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tajima A, Graham EF, Shoffner RN, et al. Cryopreservation of semen from unique lines of chicken germ plasm. Poult Sci. 1990;69:999–1002.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tajima A, Naito M, Yasuda Y, et al. Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallus domesticus). Theriogenology. 1993;40:509–19.

    CAS  PubMed  CrossRef  Google Scholar 

  • Takagi S, Ono T, Tsukada A, et al. Fertilization and blastoderm development of quail oocytes after intracytoplasmic injection of chicken sperm bearing the W chromosome. Poult Sci. 2007;86:937–43.

    Google Scholar 

  • Thoraval P, Afanassieff M, Cosset FL, et al. Germline transmission of exogenous genes in chickens using helper-free ecotropic avian leukosis virus-based vectors. Transgenic Res. 1995;4:369–77.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tonus C, Cloquette K, Ectors F, et al. Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reprod Fertil Dev. 2014;28:628–39.

    CrossRef  CAS  Google Scholar 

  • Trefil P, Micáková A, Mucksová J, et al. Restoration of spermatogenesis and male fertility by transplantation of dispersed testicular cells in the chicken. Biol Reprod. 2006;75:575–81.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tselutin K, Seigneurin F, Blesbois E. Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult Sci. 1999;78:586–90.

    CAS  PubMed  CrossRef  Google Scholar 

  • van de Lavoir MC, Diamond JH, Leighton PA, et al. Germline transmission of genetically modified primordial germ cells. Nature. 2006;441:766–9.

    PubMed  CrossRef  CAS  Google Scholar 

  • van de Lavoir MC, Collarini EJ, Leighton PA, et al. Interspecific germline transmission of cultured primordial germ cells. PLoS One. 2012;7:e35664.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Váradi É, Végi B, Liptói K, et al. Methods for cryopreservation of guinea fowl sperm. PLoS One. 2013;8:e62759.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vick L, Li Y, Simkiss K. Transgenic birds from transformed primordial germ cells. Proc R Soc B Biol Sci. 1993;251:179–82.

    CAS  CrossRef  Google Scholar 

  • Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol. 1998;16:639–41.

    CAS  PubMed  CrossRef  Google Scholar 

  • Wernery U, Liu C, Baskar V, et al. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard offspring: potential for repopulating an endangered species. PLoS One. 2010;5:e15824.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Whishart GJ. Quantitation of the fertilising ability of fresh compared with frozen and thawed fowl spermatozoa. Br Poult Sci. 1985;26:375–80.

    CrossRef  Google Scholar 

  • Whyte J, Glover JD, Woodcock M, et al. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports. 2015;5:1171–82.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yamamoto Y, Usui F, Nakamura Y, et al. A novel method to isolate primordial germ cells and its use for the generation of germline chimeras in chicken. Biol Reprod. 2007;77:115–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoshizaki G, Ichikawa M, Hayashi M, et al. Sexual plasticity of ovarian germ cells in rainbow trout. Development. 2010;137:1227–30.

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang X, Ebata KT, Nagano MC. Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol Reprod. 2003;69:1872–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao DF, Kuwana T. Purification of avian circulating primordial germ cells by Nycodenz density gradient centrifugation. Br Poult Sci. 2003;44:30–5.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nakamura, Y. (2017). Avian Biotechnology. In: Sasanami, T. (eds) Avian Reproduction. Advances in Experimental Medicine and Biology, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-10-3975-1_12

Download citation