Skip to main content

CMOS-Based High-Density Microelectrode Arrays: Technology and Applications

  • Chapter
  • First Online:
Emerging Trends in Neuro Engineering and Neural Computation

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Functional analysis of brain activity requires high-throughput and high-resolution tools for observation and manipulation. One approach is the use of microelectrode arrays (MEAs) for long-term in vitro extracellular recording of electrical activity from multiple neurons. Electrodes arranged on a planar substrate detect electric signals from surrounding neurons produced by ionic current flow through the cell membranes. Despite the advantages, MEA data analyses have been limited to extract parameters as a population average (e.g., firing rate). In order to extract information at the single-neuron or subcellular level, MEAs with high spatiotemporal resolution and good signal quality are required. In this chapter, we introduce the current trends on the technology and applications of complementary metal–oxide–semiconductor or CMOS-based high-density microelectrode arrays (HDMEAs). We review the recent HDMEA applications that facilitate single neuron and neuronal network studies and accelerate drug screening and biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos, A.P., Andrews, A.M., Boyden, E.S., et al.: Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013). doi:10.1021/nn4012847

    Article  Google Scholar 

  2. Marblestone, A.H., Zamft, B.M., Maguire, Y.G., et al.: Physical principles for scalable neural recording. Front. Comput. Neurosci. (2013). doi:10.3389/fncom.2013.00137

    Google Scholar 

  3. Contreras, D.: Electrophysiological classes of neocortical neurons. Neural Netw. 17, 633–646 (2004). doi:10.1016/j.neunet.2004.04.003

    Article  MATH  Google Scholar 

  4. Llinas, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988). doi:10.1126/science.3059497

    Article  Google Scholar 

  5. Wood, C., Williams, C., Waldron, G.J.: Patch clamping by numbers. Drug Discov Today 9, 434–441 (2004). doi:10.1016/S1359-6446(04)03064-8

    Article  Google Scholar 

  6. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012). doi:10.1038/nrn3241

    Article  Google Scholar 

  7. Henze, D.A., Borhegyi, Z., Csicsvari, J., et al.: Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000)

    Google Scholar 

  8. Müller, J., Ballini, M., Livi, P., et al.: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767–2780 (2015). doi:10.1039/C5LC00133A

    Article  Google Scholar 

  9. Ballini, M., Muller, J., Livi, P., et al.: A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J. Solid State Circuits 49, 2705–2719 (2014). doi:10.1109/JSSC.2014.2359219

    Article  Google Scholar 

  10. Frey, U., Sedivy, J., Heer, F., et al.: Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid State Circuits 45, 467–482 (2010). doi:10.1109/JSSC.2009.2035196

    Article  Google Scholar 

  11. Hierlemann, A., Frey, U., Hafizovic, S., Heer, F.: Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE 99, 252–284 (2011). doi:10.1109/JPROC.2010.2066532

    Article  Google Scholar 

  12. Obien, M.E.J., Deligkaris, K., Bullmann, T., et al.: Revealing neuronal function through microelectrode array recordings. Front. Neurosci. (2015). doi:10.3389/fnins.2014.00423

    Google Scholar 

  13. Alpha MED Science Co., Ltd.: MED64—A low-noise and user-friendly multielectrode array system for in-vitro electrophysiology (2009). http://www.med64.com

  14. Berényi, A., Somogyvari, Z., Nagy, A.J., et al.: Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111, 1132–1149 (2014). doi:10.1152/jn.00785.2013

    Article  Google Scholar 

  15. Blanche, T.J.: Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987–3000 (2005). doi:10.1152/jn.01023.2004

    Article  Google Scholar 

  16. Du, J., Blanche, T.J., Harrison, R.R., et al.: Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS one 6, e26204 (2011). doi:10.1371/journal.pone.0026204

    Article  Google Scholar 

  17. Greschner, M., Field, G.D., Li, P.H., et al.: A polyaxonal amacrine cell population in the primate retina. J. Neurosci. 34, 3597–3606 (2014). doi:10.1523/JNEUROSCI.3359-13.2014

    Article  Google Scholar 

  18. Gross, G.W., Rieske, E., Kreutzberg, G.W., Meyer, A.: A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci. Lett. 6, 101–105 (1977). doi:10.1016/0304-3940(77)90003-9

    Article  Google Scholar 

  19. Jones, K.E., Campbell, P.K., Normann, R.A.: A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20, 423–437 (1992). doi:10.1007/BF02368134

    Article  Google Scholar 

  20. Litke, A.M., Bezayiff, N., Chichilnisky, E.J., et al.: What does the eye tell the brain?: development of a system for the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51, 1434–1440 (2004). doi:10.1109/TNS.2004.832706

    Article  Google Scholar 

  21. Multi Channel Systems, GmbH: Multi Channel Systems GmbH (2006). http://www.multichannelsystems.com

  22. Nisch, W., Böck, J., Egert, U., et al.: A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. Biosens. Bioelectron. 9, 737–741 (1994). doi:10.1016/0956-5663(94)80072-3

    Article  Google Scholar 

  23. Oka, H., Shimono, K., Ogawa, R., et al.: A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J. Neurosci. Methods 93, 61–67 (1999). doi:10.1016/S0165-0270(99)00113-2

    Article  Google Scholar 

  24. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993). doi:10.1002/hipo.450030307

    Article  Google Scholar 

  25. Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2, 19–31 (1980)

    Article  Google Scholar 

  26. Regehr, W.G., Pine, J., Cohan, C.S., et al.: Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J. Neurosci. Methods 30, 91–106 (1989). doi:10.1016/0165-0270(89)90055-1

    Article  Google Scholar 

  27. Segev, R., Goodhouse, J., Puchalla, J., Berry, M.J.: Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 7, 1155–1162 (2004). doi:10.1038/nn1323

    Article  Google Scholar 

  28. Thomas Jr., C., Springer, P., Loeb, G., et al.: A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74, 61–66 (1972). doi:10.1016/0014-4827(72)90481-8

    Article  Google Scholar 

  29. Greve, F., Lichtenberg, J., Kirstein, K.-U., et al.: A perforated CMOS microchip for immobilization and activity monitoring of electrogenic cells. J Micromechanics Microengineering 17, 462–471 (2007). doi:10.1088/0960-1317/17/3/007

    Article  Google Scholar 

  30. DeBusschere, B.D., Kovacs, G.T.A.: Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens. Bioelectron. 16, 543–556 (2001). doi:10.1016/S0956-5663(01)00168-3

    Article  Google Scholar 

  31. Olsson, R.H., Wise, K.D.: A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid State Circuits 40, 2796–2804 (2005). doi:10.1109/JSSC.2005.858479

    Article  Google Scholar 

  32. Najafi, K., Wise, K.D.: An implantable multielectrode array with on-chip signal processing. IEEE J. Solid State Circuits 21, 1035–1044 (1986). doi:10.1109/JSSC.1986.1052646

    Article  Google Scholar 

  33. Bai, Q., Wise, K.D.: Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng. 48, 911–920 (2001). doi:10.1109/10.936367

    Article  Google Scholar 

  34. Huys, R., Braeken, D., Jans, D., et al.: Single-cell recording and stimulation with a 16 k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12, 1274 (2012). doi:10.1039/c2lc21037a

    Article  Google Scholar 

  35. Lopez, C.M., Andrei, A., Mitra, S., et al.: An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid State Circuits 49, 248–261 (2014). doi:10.1109/JSSC.2013.2284347

    Article  Google Scholar 

  36. Seidl, K., Herwik, S., Torfs, T., et al.: CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording. J Microelectromechanical Syst. 20, 1439–1448 (2011). doi:10.1109/JMEMS.2011.2167661

    Article  Google Scholar 

  37. Lopez, C.M., Mitra, S., Putzeys, J., et al.: A 966-electrode neural probe with 384 configurable channels in 0.13 µm SOI CMOS. In: 2016 IEEE International Solid-State Circuits Conference ISSCC, pp. 392–393. IEEE (2016)

    Google Scholar 

  38. Viswam, V., Dragas, J., Shadmani, A., et al.: Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In: 2016 IEEE International Solid State Circuits Conference ISSCC 2016, pp. 394–396. San Franc. CA USA Jan 31–Feb 4 2016. (2016)

    Google Scholar 

  39. Yuan, X., Kim, S., Juyon, J., et al.: A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 kS/s (2016)

    Google Scholar 

  40. Aziz, J.N.Y., Abdelhalim, K., Shulyzki, R., et al.: 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J. Solid State Circuits 44, 995–1005 (2009). doi:10.1109/JSSC.2008.2010997

    Article  Google Scholar 

  41. Berdondini, L., Imfeld, K., Maccione, A., et al.: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644 (2009). doi:10.1039/b907394a

    Article  Google Scholar 

  42. Bertotti, G., Velychko, D., Dodel, N., et al.: A CMOS-based sensor array for in-vitro neural tissue interfacing with 4225 recording sites and 1024 stimulation sites, pp. 304–307. IEEE (2014)

    Google Scholar 

  43. Eversmann, B., Lambacher, A., Gerling, T., et al.: A neural tissue interfacing chip for in-vitro applications with 32 k recording/stimulation channels on an active area of 2.6 mm2, pp. 211–214. IEEE (2011)

    Google Scholar 

  44. Eversmann, B., Jenkner, M., Hofmann, F., et al.: A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid State Circuits 38, 2306–2317 (2003). doi:10.1109/JSSC.2003.819174

    Article  Google Scholar 

  45. Heer, F., Hafizovic, S., Franks, W., et al.: CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J. Solid State Circuits 41, 1620–1629 (2006). doi:10.1109/JSSC.2006.873677

    Article  Google Scholar 

  46. Johnson, B., Peace, S.T., Cleland, T.A., Molnar, A.: A 50 μm pitch, 1120-channel, 20 kHz frame rate microelectrode array for slice recording, pp. 109–112. IEEE (2013)

    Google Scholar 

  47. Johnson, B., Peace, S.T., Wang, A., et al.: A 768-channel CMOS microelectrode array with angle sensitive pixels for neuronal recording. IEEE Sens. J. 13, 3211–3218 (2013). doi:10.1109/JSEN.2013.2266894

    Article  Google Scholar 

  48. Maccione, A., Simi, A., Nieus, T., et al.: Sensing and actuating electrophysiological activity on brain tissue and neuronal cultures with a high-density CMOS-MEA, pp. 752–755, IEEE (2013)

    Google Scholar 

  49. Lambacher, A., Vitzthum, V., Zeitler, R., et al.: Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Appl. Phys. A 102, 1–11 (2011). doi:10.1007/s00339-010-6046-9

    Article  Google Scholar 

  50. Fejtl, M., Stett, A., Nisch, W., et al.: On micro-electrode array revival: its development, sophistication of recording, and stimulation. In: Taketani, M., Baudry, M. (eds.) Advances in Network Electrophysiology, pp. 24–37. Springer US (2006)

    Google Scholar 

  51. Stett, A., Egert, U., Guenther, E., et al.: Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 377, 486–495 (2003). doi:10.1007/s00216-003-2149-x

    Article  Google Scholar 

  52. Weis, R., Fromherz, P.: Frequency dependent signal transfer in neuron transistors. Phys. Rev. E 55, 877–889 (1997). doi:10.1103/PhysRevE.55.877

    Article  Google Scholar 

  53. Nelson, M.J., Pouget, P., Nilsen, E.A., et al.: Review of signal distortion through metal microelectrode recording circuits and filters. J. Neurosci. Methods 169, 141–157 (2008). doi:10.1016/j.jneumeth.2007.12.010

    Article  Google Scholar 

  54. Robinson, D.A.: The electrical properties of metal microelectrodes. Proc. IEEE 56, 1065–1071 (1968). doi:10.1109/PROC.1968.6458

    Article  Google Scholar 

  55. Ness, T.V., Chintaluri, C., Potworowski, J., et al.: Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13, 403–426 (2015). doi:10.1007/s12021-015-9265-6

    Article  Google Scholar 

  56. Camuñas-Mesa, L.A., Quiroga, R.Q.: A detailed and fast model of extracellular recordings. Neural Comput. 25, 1191–1212 (2013). doi:10.1162/NECO_a_00433

    Article  MathSciNet  Google Scholar 

  57. Viswam, V., Jäckel, D., Jones, I., et al.: Effects of sub-10 μm electrode sizes on extracellular recording of neuronal cells. In: Proceedings 18th International Conference Miniaturized Systems for Chemistry Life Sciences MicroTAS. Chemical and Biological Microsystems Society, pp. 980–982. San Diego, California (2014)

    Google Scholar 

  58. Spira, M.E., Hai, A.: Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013). doi:10.1038/nnano.2012.265

    Article  Google Scholar 

  59. Cheney, P.D., Fetz, E.E.: Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J. Neurophysiol. 53, 786–804 (1985)

    Google Scholar 

  60. Bakkum, D.J., Frey, U., Radivojevic, M., et al.: Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat. Commun. (2013). doi:10.1038/ncomms3181

    Google Scholar 

  61. Bakkum, D.J., Chao, Z.C., Potter, S.M.: Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks. PLoS one 3, e2088 (2008). doi:10.1371/journal.pone.0002088

    Article  Google Scholar 

  62. Hashimoto, T., Elder, C.M., Vitek, J.L.: A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J. Neurosci. Methods 113, 181–186 (2002). doi:10.1016/S0165-0270(01)00491-5

    Article  Google Scholar 

  63. Wagenaar, D.A., Potter, S.M.: Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Methods 120, 113–120 (2002). doi:10.1016/S0165-0270(02)00149-8

    Article  Google Scholar 

  64. Livi, P., Heer, F., Frey, U., et al.: Compact Voltage and Current Stimulation Buffer for High-Density Microelectrode Arrays. IEEE Trans. Biomed. Circuits Syst. 4, 372–378 (2010). doi:10.1109/TBCAS.2010.2080676

    Article  Google Scholar 

  65. Hafizovic, S., Heer, F., Ugniwenko, T., et al.: A CMOS-based microelectrode array for interaction with neuronal cultures. J. Neurosci. Methods 164, 93–106 (2007). doi:10.1016/j.jneumeth.2007.04.006

    Article  Google Scholar 

  66. Müller, J., Bakkum, D.J., Hierlemann, A.: Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons. Front. Neural Circuits (2013). doi:10.3389/fncir.2012.00121

    Google Scholar 

  67. Gandolfo, M., Maccione, A., Tedesco, M., et al.: Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs. J. Neural Eng. 7, 056001 (2010). doi:10.1088/1741-2560/7/5/056001

    Article  Google Scholar 

  68. Heer, F., Hafizovic, S., Ugniwenko, T., et al.: Single-chip microelectronic system to interface with living cells. Biosens. Bioelectron. 22, 2546–2553 (2007). doi:10.1016/j.bios.2006.10.003

    Article  Google Scholar 

  69. Lewandowska, M.K., Radivojević, M., Jäckel, D., et al.: Cortical axons, isolated in channels, display activity-dependent signal modulation as a result of targeted stimulation. Front Neurosci. (2016). doi:10.3389/fnins.2016.00083

  70. Lewandowska, M.K., Bakkum, D.J., Rompani, S.B., Hierlemann, A.: Recording large extracellular spikes in microchannels along many axonal sites from individual neurons. PLoS one 10, e0118514 (2015). doi:10.1371/journal.pone.0118514

    Article  Google Scholar 

  71. Fiscella, M., Franke, F., Farrow, K., et al.: Visual coding with a population of direction-selective neurons. J. Neurophysiol. 114, 2485–2499 (2015). doi:10.1152/jn.00919.2014

    Article  Google Scholar 

  72. Fiscella, M., Farrow, K., Jones, I.L., et al.: Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection. J. Neurosci. Methods 211, 103–113 (2012). doi:10.1016/j.jneumeth.2012.08.017

    Article  Google Scholar 

  73. Franke, F., Fiscella, M., Sevelev, M., et al.: Structures of neural correlation and how they favor coding. Neuron 89, 409–422 (2016). doi:10.1016/j.neuron.2015.12.037

    Article  Google Scholar 

  74. Maccione, A., Hennig, M.H., Gandolfo, M., et al.: Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse: Pan-retinal high-density retinal wave recordings. J. Physiol. 592, 1545–1563 (2014). doi:10.1113/jphysiol.2013.262840

    Article  Google Scholar 

  75. Menzler, J., Zeck, G.: Network oscillations in rod-degenerated mouse retinas. J. Neurosci. 31, 2280–2291 (2011). doi:10.1523/JNEUROSCI.4238-10.2011

    Article  Google Scholar 

  76. Yonehara, K., Fiscella, M., Drinnenberg, A., et al.: Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity. Neuron 89, 177–193 (2016). doi:10.1016/j.neuron.2015.11.032

    Article  Google Scholar 

  77. Eickenscheidt, M., Jenkner, M., Thewes, R., et al.: Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array. J. Neurophysiol. 107, 2742–2755 (2012). doi:10.1152/jn.00909.2011

    Article  Google Scholar 

  78. Jones, I.L., Russell, T., Fiscella, M., et al.: Characterization of mammalian retinal ganglion cell response to voltage stimulus. In: Stett, A., Zeck, G. (eds.) Proceedings of MEA Meeting 2014 July 1–July 4 2014 Reutlingen, Germany. 9th International Meeting on Substrate-Integrated Microelectrode Arrays. NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, pp. 74–75 (2014)

    Google Scholar 

  79. Stutzki, H., Leibig, C., Andreadaki, A., et al.: Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury. Front. Cell. Neurosci. (2014). doi:10.3389/fncel.2014.00038

    Google Scholar 

  80. Fiscella, M., Franke, F., Müller, J., et al.: Decoding of motion directions by direction-selective retina cells. In: Proceedings MEA Meeting 2014 July 1–July 4 2014 Reutlingen Germany. 9th International Meeting Substrate Integrated Microelectrode Arrays. NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, pp. 98–99 (2014)

    Google Scholar 

  81. Zeck, G., Lambacher, A., Fromherz, P.: Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response. PLoS one 6, e20810 (2011). doi:10.1371/journal.pone.0020810

    Article  Google Scholar 

  82. Jones, I.L., Russell, T.L., Farrow, K., et al.: A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array. Front. Neurosci. (2015). doi:10.3389/fnins.2015.00360

    Google Scholar 

  83. Velychko, D., Eickenscheidt, M., Thewes, R., Zeck, G.: Simultaneous stimulation and recording of retinal action potentials using capacitively coupled high- density CMOS-based MEAs. In: Proceedings 9th International Meeting Substrate Integrated Microelectrode Arrays, pp. 78–79. Reutlingen, Germany (2014)

    Google Scholar 

  84. Reinhard, K., Mutter, M., Fiscella, M., et al.: Novel insights into visual information processing of human retina. In: Proceedings 9th International Meeting Substrate Integrated Microelectrode Arrays, p 102. Reutlingen, Germany (2014)

    Google Scholar 

  85. Frey, U., Egert, U., Heer, F., et al.: Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 24, 2191–2198 (2009). doi:10.1016/j.bios.2008.11.028

    Article  Google Scholar 

  86. Obien, M.E.J., Hierlemann, A., Frey, U.: Technique for analysis of purkinje cell sub-cellular functional dynamics in acute cerebellar slices using a high-density microelectrode array. In: Proceedings 9th International Meeting Substrate Integrated Microelectrode Arrays, pp. 88–90. Reutlingen, Germany (2014)

    Google Scholar 

  87. Ferrea, E., Maccione, A., Medrihan, L., et al.: Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front. Neural Circuits (2012). doi:10.3389/fncir.2012.00080

    Google Scholar 

  88. Medrihan, L., Ferrea, E., Greco, B., et al.: Asynchronous GABA release is a key determinant of tonic inhibition and controls neuronal excitability: a study in the synapsin II-/-mouse. Cereb. Cortex 25, 3356–3368 (2015). doi:10.1093/cercor/bhu141

    Article  Google Scholar 

  89. Heer, F., Franks, W., Blau, A., et al.: CMOS microelectrode array for the monitoring of electrogenic cells. Biosens. Bioelectron. 20, 358–366 (2004). doi:10.1016/j.bios.2004.02.006

    Article  Google Scholar 

  90. Imfeld, K., Neukom, S., Maccione, A., et al.: Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans. Biomed. Eng. 55, 2064–2073 (2008). doi:10.1109/TBME.2008.919139

    Article  Google Scholar 

  91. Sanchez-Bustamante, C.D., Frey, U., Kelm, J.M., et al.: Modulation of cardiomyocyte electrical properties using regulated bone morphogenetic protein-2 expression. Tissue Eng. Part A 14, 1969–1988 (2008). doi:10.1089/ten.tea.2007.0302

    Article  Google Scholar 

  92. Gong, W., Jäckel, D., Müller, J., et al.: Long-term cultivation and recording from organo-typic brain slices on high-density micro-electrode arrays. In: Proceedings 9th International Meeting Substrate Integrated Microelectrode Arrays, pp. 335–336. Reutlingen, Germany (2014)

    Google Scholar 

  93. Radivojevic, M., Jäckel, D., Müller, J., et al.: Finding the most effective site for extracellular neuronal stimulation. In: Proceedings MEA Meeting 2014 July 1–July 4 2014, Reutlingen, Germany. 9th International Meeting Substrate Integrated Microelectrode Arrays. Reutlingen, Germany (2014)

    Google Scholar 

  94. Panas, D., Amin, H., Maccione, A., et al.: Sloppiness in spontaneously active neuronal networks. J. Neurosci. 35, 8480–8492 (2015). doi:10.1523/JNEUROSCI.4421-14.2015

    Article  Google Scholar 

  95. Yada, Y., Kanzaki, R., Takahashi, H.: State-Dependent propagation of neuronal sub-population in spontaneous synchronized bursts. Front. Syst. Neurosci. (2016). doi:10.3389/fnsys.2016.00028

    Google Scholar 

  96. Maccione, A., Garofalo, M., Nieus, T., et al.: Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS micro electrode arrays. J. Neurosci. Methods 207, 161–171 (2012). doi:10.1016/j.jneumeth.2012.04.002

    Article  Google Scholar 

  97. Poria, D., Dhingra, N.K.: Spontaneous oscillatory activity in rd1 mouse retina is transferred from ON pathway to OFF pathway via glycinergic synapse. J. Neurophysiol. 113, 420–425 (2015). doi:10.1152/jn.00702.2014

    Article  Google Scholar 

  98. Egert, U., Heck, D., Aertsen, A.: Two-dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res. 142, 268–274 (2002). doi:10.1007/s00221-001-0932-5

  99. Frey, U., Egert, U., Jackel, D., et al.: Depth recording capabilities of planar high-density microelectrode arrays, pp. 207–210. IEEE (2009)

    Google Scholar 

  100. Newell, D.W., Barth, A., Papermaster, V., Malouf, A.T.: Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures. J. Neurosci. Off. J. Soc. Neurosci. 15, 7702–7711 (1995)

    Google Scholar 

  101. Ostergaard, K., Finsen, B., Zimmer, J.: Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Exp. Brain Res. 103, 70–84 (1995)

    Article  Google Scholar 

  102. Krassioukov, A.V., Ackery, A., Schwartz, G., et al.: An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res. Brain Res. Protoc. 10, 60–68 (2002)

    Article  Google Scholar 

  103. Birgbauer, E., Rao, T.S., Webb, M.: Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J. Neurosci. Res. 78, 157–166 (2004). doi:10.1002/jnr.20248

    Article  Google Scholar 

  104. Cho, S., Wood, A., Bowlby, M.R.: Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr. Neuropharmacol. 5, 19–33 (2007)

    Article  Google Scholar 

  105. Gähwiler, B.H.: Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods 4, 329–342 (1981)

    Article  Google Scholar 

  106. Stoppini, L., Buchs, P.A., Muller, D.: A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991)

    Article  Google Scholar 

  107. Gong, W., Sencar, J., Jackel, D., et al.: Long-term, high-spatiotemporal resolution recording from cultured organotypic slices with high-density microelectrode arrays, pp. 1037–1040. IEEE (2015)

    Google Scholar 

  108. Amin, H., Maccione, A., Marinaro, F., et al.: Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for 3-month culture with 4096-electrode arrays. Front. Neurosci. (2016). doi:10.3389/fnins.2016.00121

    Google Scholar 

  109. Doudna, J.A., Charpentier, E.: The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014). doi:10.1126/science.1258096

    Article  Google Scholar 

  110. El Hady, A., Afshar, G., Bröking, K., et al.: Optogenetic stimulation effectively enhances intrinsically generated network synchrony. Front. Neural Circuits (2013). doi:10.3389/fncir.2013.00167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Engelene J. Obien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Obien, M.E.J., Gong, W., Frey, U., Bakkum, D.J. (2017). CMOS-Based High-Density Microelectrode Arrays: Technology and Applications. In: Bhatti, A., Lee, K., Garmestani, H., Lim, C. (eds) Emerging Trends in Neuro Engineering and Neural Computation. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3957-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3957-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3955-3

  • Online ISBN: 978-981-10-3957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics