Advertisement

Solution of Differential Flat Systems Using Variational Calculus

  • Kahina LouadjEmail author
  • Benjamas Panomruttanarug
  • Alexandre Carlos Brandão Ramos
  • Felix Mora-Camino
Conference paper

Abstract

The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducing characteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Three illustrative examples are also presented.

References

  1. 1.
    M. Fliess, J. Lévine, P. Martin, P. Rouchon, Flatness and defect of non-linear systems: theory and examples. Int. J. Control 61 (6), 1327–1361 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    W.C. Lu, L. Duan, F. Mora-Camino, K. Achaibou, Flight mechanics and differential flatness, in Dincon 04, Proceeding of Dynamics and Control Conference, Ilha Solteira (2004), pp. 830–839Google Scholar
  3. 3.
    A. Drouin, S. Simões Cunha, A.C. Brandão Ramos, F. Mora Camino, Differential flatness and control of nonlinear systems, in 30th Chinese Control Conference, Yantai (2011)Google Scholar
  4. 4.
    A.F. Gomèz Becerna, V.H. Olivares Peregrino, A. Blanco Ortega, J. Linarès Flores,Optimal controller and controller based on differential flatness in a linear guide system: a performance comparison of indexes, in Mathematical Problems in Enginnering, Wenguang Yu, vol. 2015 (2015)Google Scholar
  5. 5.
    K. Louadj, B. Panomruttanarug, A.C. Brandão Ramos, F. Mora-Camino, Trajectory optimization for differential flat systems, in Proceedings of the International Multiconference of Engineers and Computer Scientists 2016, IMECS 2016, Hong Kong, 16–18 Mar 2016. Lecture Notes in Engineering and Computer Science, pp. 225–228Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Kahina Louadj
    • 1
    • 2
    Email author
  • Benjamas Panomruttanarug
    • 3
  • Alexandre Carlos Brandão Ramos
    • 4
  • Felix Mora-Camino
    • 5
  1. 1.MAIAA-ENACToulouseFrance
  2. 2.Laboratoire d’Informatique, de Mathématiques, et de Physique pour l’Agriculture et les Forêts (LIMPAF)BouiraAlgeria
  3. 3.Department of Control Systems and Instrumentation Engeneering Thonburi (KMUTT)King Mongkuts University of TechnologyBangkokThailand
  4. 4.Mathematical and Computer Science InstituteFederal University of Itajuba (UNIFEI)ItajubaBrazil
  5. 5.Laboratoire ENAC, Ecole Nationale de l’Aviation CivileToulouseFrance

Personalised recommendations