Skip to main content

Computational Analysis of Carrier Mass Under Energetic Photons in Accumulation Layers of MOSFET Devices

  • Conference paper
  • First Online:
Advances in Optical Science and Engineering

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 194))

  • 1123 Accesses

Abstract

The influence of strongly energetic photons on the carrier mass (CM) at the Fermi level in accumulation layers of MOSFET devices, has been investigated taking accumulation layers of InAs and InSb as examples. It has been observed that the CM decreases with decreasing surface electron concentration per unit area. The CM is a function of chemical potential, scattering potential and electric sub band index together with other physical variables, which is the characteristics features of such 2D systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. KP Ghatak and S Bhattacharya, “Effective Electron Mass in Low—Dimensional Semiconductors”, Springer Series in Material Science 167, (Springer, Heidelberg, 2013).

    Google Scholar 

  2. PK Bose, N Paitya, S Bhattacharya, D De, S Saha, KM Chatterjee, S Pahari, KP Ghatak, Quantum Matter, 1, 89 (2012).

    Google Scholar 

  3. N Paitya, KP Ghatak, Reviews in Theoretical Science, 1, 165 (2013).

    Google Scholar 

  4. KP Ghatak, B Mitra, International Journal of Electronics, 72, 541 (1992).

    Google Scholar 

  5. M Mondal, N Chattopadhyay, KP Ghatak, Journal of Low Temperature Physics, 66, 131 (1987).

    Google Scholar 

  6. PK Chakraborty, GC Datta, KP Ghatak, Physica Scripta, 68, 368 (2003).

    Google Scholar 

  7. B Mitra, KP Ghatak, Solid-state Electronics, 32, 177 (1989).

    Google Scholar 

  8. KP Ghatak, M Mondal, Zeitschrift für Physik B Condensed Matter, 69, 471 (1988).

    Google Scholar 

  9. KP Ghatak, S Bhattacharya, SK Biswas, A Dey, AK Dasgupta, Physica Scripta, 75, 820 (2007).

    Google Scholar 

  10. M Mondal, KP Ghatak, Physics Letters A, 131, 529 (1988).

    Google Scholar 

  11. AN Chakravarti, AK Chowdhury, KP Ghatak, S Ghosh, A Dhar, Applied physics, 25, 105 (1981).

    Google Scholar 

  12. S Bhattacharya, D De, SM Adhikari, KP Ghatak, Superlattices and Microstructures, 51, 203 (2012).

    Google Scholar 

  13. A Ghoshal, B Mitra, KP Ghatak, Il Nuovo Cimento D, 12, 891 (1990).

    Google Scholar 

  14. KP Ghatak, B Mitra, A Ghoshal, Physica Status Solidi (b), 154, K121 (1989).

    Google Scholar 

  15. AN Chakravarti, KP Ghatak, KK Ghosh, S Ghosh, A Dhar, Zeitschrift für Physik B Condensed Matter, 47, 149 (1982).

    Google Scholar 

  16. M Mondal, KP Ghatak, Physica Status Solidi (b), 135, K21 (1986).

    Google Scholar 

  17. KP Ghatak, A Ghoshal, B Mitra, Il Nuovo Cimento D, 13, 867 (1991).

    Google Scholar 

  18. M Mondal, KP Ghatak, Physica Status Solidi (b), 129, 745 (1985).

    Google Scholar 

  19. KP Ghatak, M Mondal, Zeitschrift für Naturforschung A, 41, 881 (1986).

    Google Scholar 

  20. AN Chakravarti, KP Ghatak, KK Ghosh, HM Mukherjee, Physica Status Solidi (b), 116, 17 (1983).

    Google Scholar 

  21. KP Ghatak, A Ghosal, Physica Status Solidi (b), 151, K135 (1989).

    Google Scholar 

  22. KP Ghatak, N Chatterjee, M Mondal, Physica Status Solidi (b), 139, K25 (1987).

    Google Scholar 

  23. S Debbarma, A Bhattacharjee, S Bhattacharyya, A Mondal, KP Ghatak, Journal of Advanced Physics, 1, 84 (2012).

    Google Scholar 

  24. B Mitra, KP Ghatak, Solid-state Electronics, 32, 515 (1989).

    Google Scholar 

  25. M Mondal, KP Ghatak, Physica Status Solidi (b), 126, K47 (1984).

    Google Scholar 

  26. M Mondal, KP Ghatak, Physica Status Solidi (b), 139, 185 (1987).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Dr. S. Chakrabarti, Director, Institute of Engineering and Management, Kolkata for inspiration and helpful discussion in the real sense of the term.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Paul, R., Ghatak, S., Das, S., Mitra, M., Datta, T. (2017). Computational Analysis of Carrier Mass Under Energetic Photons in Accumulation Layers of MOSFET Devices. In: Bhattacharya, I., Chakrabarti, S., Reehal, H., Lakshminarayanan, V. (eds) Advances in Optical Science and Engineering. Springer Proceedings in Physics, vol 194. Springer, Singapore. https://doi.org/10.1007/978-981-10-3908-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3908-9_63

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3907-2

  • Online ISBN: 978-981-10-3908-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics