Skip to main content

Oscillator Strength of Gaussian Double Quantum Well for Intersubband Transition

  • Conference paper
  • First Online:
  • 1135 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 194))

Abstract

Oscillator strength and absorption cross-section of Double quantum well triple barrier structure with Gaussian geometry is analytically computed for intersubband optical transition between ground state and first excited state. Electric field is applied along quantum confinement, and Kane-type conduction band nonparabolicity of first order is considered for near accurate computation. Result suggests that oscillator strength monotonically increases with wavelength, and is higher when nonparabolicity factor is considered. Cross-section is higher for lower well dimension. Result is also compared with parabolic overestimation. Simulated findings are important for designing optical detector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Perera, A. G. U., “Quantum Structures for Multiband Photon Detection”, Opto-Electronics Review, vol. 14, pp. 99–108 (2006).

    Google Scholar 

  2. Phillips, M. C., Taubman, M. S., Bernacki, B. E., Cannon, B. D., Schiffern, J. T., Myers, T. L., “Design and Performance of a Sensor System for Detection of Multiple Chemicals using an External Cavity Quantum Cascade Laser”, Proceedings of SPIE (Quantum Sensing and Nanophotonic Devices VII), vol. 7608, p. 76080D (2010). (January 23, 2010).

    Google Scholar 

  3. Wei, R., Deng, N., Wang, M., Zhang, S., Chen, P., Liu, L., Zhang, J., “Study of Self-assembled Ge Quantum Dot Infrared Photodetectors”, 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 330–333 (2006).

    Google Scholar 

  4. Deyasi, A., Bhattacharyya, S., Das. N. R., “A Finite Difference Technique for Computation of Electron States in Core-Shell Quantum Wires of Different Configurations”, Physica Scripta, vol. 89(6), p. 065804 (2014).

    Google Scholar 

  5. Li, Y., Voskoboynikov, O., Lee, C. P., Sze, S. M., “Electron Energy State Dependence on the Shape and Size of Semiconductor Quantum Dots”, Journal of Applied Physics, vol. 90, pp. 6416–6420 (2001).

    Google Scholar 

  6. Deyasi, A., Bhattacharyya, S., Das, N. R., “Computation of Intersubband Transition Energy in Normal and Inverted Core-Shell Quantum Dots using Finite Difference Technique”, Superlattices & Microstructures, vol. 60, pp. 414–425 (2013).

    Google Scholar 

  7. Yun, K., Sheng, W., Xianli, L., “Electron Energy States in a Two-Dimensional GaAs Quantum Ring with Hydrogenic Donor Impurity in the Presence of Magnetic Field”, Journal of Semiconductors, vol. 36(3), p. 032003 (2015).

    Google Scholar 

  8. Lô, B., Gueye, S. B., “Numerical Verification of Transition’s Energies of Excitons in Quantum Well of ZnO with the Finite Difference Method”, Journal of Modern Physics, vol. 7, pp. 329–334 (2016).

    Google Scholar 

  9. Simion, C. E., Ciucu, C. I., “Triple–barrier Resonant Tunneling: A Transfer Matrix Approach”, Romanian Reports in Physics, vol. 59, pp. 805–817 (2007).

    Google Scholar 

  10. Schaevitz, R. K., Roth, J. E., Ren, S., Fidaner, O., Miller, D. A. B., “Material Properties of Si-Ge/Ge Quantum Wells”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 14(4), pp. 1082–1089 (2008).

    Google Scholar 

  11. Deyasi, A., Das, N. R., “Oscillator Strength and Absorption Cross-Section of Core-Shell Triangular Quantum Wire for Intersubband Transition”, Springer Proceedings in Physics: Advances in Optical Science and Engineering, vol. 166, Chapter 78, pp. 629–635 (2014).

    Google Scholar 

  12. Tshipa, M., “Oscillator Strength for Optical Transitions in a Cylindrical Quantum Wire with an Inverse Parabolic Confining Electric Potential”, Indian Journal of Physics, vol. 88(8), pp. 849–853 (2014).

    Google Scholar 

  13. Holovatsky, V. A., Voitsekhivska, O. M., Gutsul, V. I., “Optical Oscillator Strengths for the Electron Quantum Transitions in Elliptic Nanotubes”, Romanian Journal of Physics, vol. 53(7–8), pp. 833–840 (2008).

    Google Scholar 

  14. Bhattacharyya, S., Das, N. R., “Effect of Electric Field on the Oscillator Strength and Cross-Section for Intersubband Transition in a Semiconductor Quantum Ring”, Physica Scripta, vol. 85(4), p. 045708 (2013).

    Google Scholar 

  15. Leistikow, M. D., Johansen, J., Kettelarij, A. J., Lodahl, P., Vos, W. L., “Size-dependent Oscillator Strength and Quantum Efficiency of CdSe Quantum Dots Controlled via the Local Density of States”, Physical Review B, vol. 79, p. 045301 (2009).

    Google Scholar 

  16. Nanda, J., Ivanov, S. A., Htoon, H., Bezel, I., Piryatinski, A., Tretiak, S., Kilmov, V. I., “Absorption Cross Sections and Auger Recombination Lifetimes in Inverted Core-Shell Nanocrystals: Implications for Lasing Performance”, Journal of Applied Physics, vol. 99, p. 034309 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasmita Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Sarkar, D., Deyasi, A. (2017). Oscillator Strength of Gaussian Double Quantum Well for Intersubband Transition. In: Bhattacharya, I., Chakrabarti, S., Reehal, H., Lakshminarayanan, V. (eds) Advances in Optical Science and Engineering. Springer Proceedings in Physics, vol 194. Springer, Singapore. https://doi.org/10.1007/978-981-10-3908-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3908-9_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3907-2

  • Online ISBN: 978-981-10-3908-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics