Secure Data Dissemination for Intelligent Transportation Systems

Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Intelligent transportation systems (ITS) integrate communications and information technology into the transportation systems to provide a safer and more efficient driving experience. Transmission security is of vital importance for the deployment of ITS systems in practice. In this chapter, secure data dissemination techniques are studied for relay-assisted vehicular communications towards ITS applications. We first briefly review the state of the art of vehicular networking research. Afterwards, we investigate the secure data dissemination issues for both vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) scenarios exploiting the physical-layer security approach. For the V2I scenario, a distributed source-relay selection scheme with anti-eavesdropping capabilities is proposed, for which a source-relay pair is jointly selected to maximize the achievable secrecy rate. For the V2V scenario, a fountain-coding aided relaying scheme is developed. By using this scheme, transmission security is guaranteed as long as the legitimate receiver can accumulate the required number of fountain-coded packets before the eavesdropper does. To satisfy this condition, a constellation-rotation aided cooperative jamming method is utilized to deteriorate the received signal quality at the eavesdropper. To evaluate the performance of the proposed strategy, a novel metric called QoS violating probability (QVP) is further proposed and analyzed. Finally, in the concluding remarks, we summarize the main contributions of our work, and point out some topics that are worthy of investigation in future studies.

References

  1. 1.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil, T. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys and Tutorials, 13(4), 584–616, 4th Quarter.Google Scholar
  2. 2.
    Mecklenbrauker, C. F., Molisch, A. F., Karedal, J., Tufvesson, F., Paier, A., Bemado, L., et al. (2011). Vehicular channel characterization and its implications for wireless system design and performance. Proceedings of the IEEE, 99(7), 1189–1212.CrossRefGoogle Scholar
  3. 3.
    Zhang, J., Zhang, Q., & Jia, W. (2009). VC-MAC: A cooperative MAC protocol in vehicular networks. IEEE Transactions on Vehicular Technology, 58(3), 1561–1571.CrossRefGoogle Scholar
  4. 4.
    Zhou, T., Sharif, H., Hempel, M., Mahasukhon, P., Wang, W., & Ma, T. (2011). A novel adaptive distributed cooperative relaying MAC protocol for vehicular networks. IEEE Journal on Selected Areas in Communications, 29(1), 72–82.CrossRefGoogle Scholar
  5. 5.
    Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(6), 3609–3626.CrossRefGoogle Scholar
  6. 6.
    Harigovindan, V. P., Babu, A. V., & Jacob, L. (2012). Ensuring fair access in IEEE 802.11p-based vehicle-to-infrastructure networks. EURASIP Journal on Wireless Communications and Networking. doi: 10.1186/1687-1499-2012-16.
  7. 7.
    Eiza, M. H., & Ni, Q. (2013). An evolving graph-based reliable routing scheme for VANETs. IEEE Transactions on Vehicular Technology, 62(4), 1493–1504.CrossRefGoogle Scholar
  8. 8.
    Lin, J. C., Lin, C. S., Liang, C. N., & Chen, B. C. (2012). Wireless communication performance based on IEEE 802.11p R2V field trails. IEEE Communications Magazine, 50(5), 184–191.CrossRefGoogle Scholar
  9. 9.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRefGoogle Scholar
  10. 10.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zhang, W., & Letaief, K. B. (2008). Full-rate distributed space-time codes for cooperative communications. IEEE Transactions on Wireless Communications, 7(7), 2446–2451.CrossRefGoogle Scholar
  12. 12.
    Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.CrossRefGoogle Scholar
  13. 13.
    Sun, L., Zhang, T., Lu, L., & Niu, H. (2010). On the combination of cooperative diversity and multiuser diversity in multi-source multi-relay wireless networks. IEEE Signal Processing Letters, 17(6), 535–538.CrossRefGoogle Scholar
  14. 14.
    Janani, M., Hedayat, A., Hunter, T. E., & Nosratinia, A. (2004). Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2), 362–371.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zeng, M., Zhang, R., & Cui, S. (2011). On the design of distributed beamforming for two-way relay networks. IEEE Transactions on Signal Processing, 59(5), 2284–2295.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ding, Z., & Leung, K. K. (2011). Cross-layer routing using cooperative transmission in vehicular ad-hoc networks. IEEE Journal on Selected Areas in Communications, 29(3), 571–581.CrossRefGoogle Scholar
  17. 17.
    Ng, S. C., Zhang, W., Zhang, Y., Yang, Y., & Mao, G. (2011). Analysis of access and connectivity probabilities in vehicular relay networks. IEEE Journal on Selected Areas in Communications, 29(1), 140–150.CrossRefGoogle Scholar
  18. 18.
    Li, M., Yang, Z., & Lou, W. (2011). CodeOn: cooperative popular content distribution for vehicular networks using symbol level network coding. IEEE Journal on Selected Areas in Communications, 29(1), 1–14.CrossRefGoogle Scholar
  19. 19.
    Mukherjee, A., Fakoorian, S. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573, Third quarter.Google Scholar
  20. 20.
    Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Csiszár, I., & Körner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tekin, E., & Yener, A. (2008). The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory, 54(6), 2735–2751.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Goel, S., & Negi, R. (2008). Guaranteeing secrecy using artificial noise. IEEE Transactions on Wireless Communications, 7(6), 2180–2189.CrossRefGoogle Scholar
  25. 25.
    Vilela, J. P., Pinto, P. C., & Barros, J. (2011). Position-based jamming for enhanced wireless secrecy. IEEE Transactions on Information Forensics and Security, 6(3), 616–627.CrossRefGoogle Scholar
  26. 26.
    Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zheng, G., Choo, L.-C., & Wong, K.-K. (2011). Optimal cooperative jamming to enhance physical layer security using relays. IEEE Transactions on Signal Processing, 59(3), 1317–1322.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.CrossRefGoogle Scholar
  29. 29.
    Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4(15), 1787–1791.CrossRefGoogle Scholar
  30. 30.
    Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRefGoogle Scholar
  31. 31.
    Liu, Y., Li, J., & Petropulu, A. P. (2013). Destination assisted cooperative jamming for wireless physical-layer security. IEEE Transactions on Information Forensics and Security, 8(4), 682–694.CrossRefGoogle Scholar
  32. 32.
    Zhao, H., Lu, L., Song, C., Wu, Y. (2012). IPARK: Location-aware-based intelligent parking guidance over infrastructures VANETs. International Journal of Distributed Sensor Networks, Article ID: 280515. doi: 10.1155/2012/280515.
  33. 33.
    Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6), 164–171.CrossRefGoogle Scholar
  34. 34.
    Seddik, K. G., Ibrahim, A. S., & Liu, K. J. R. (2008). Trans-modulation in wireless relay networks. IEEE Communications Letters, 12(3), 170–172.CrossRefGoogle Scholar
  35. 35.
    Wang, T., Giannakis, G. B., & Wang, R. (2008). Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications, 56(11), 1950–1960.CrossRefGoogle Scholar
  36. 36.
    Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.CrossRefGoogle Scholar
  37. 37.
    Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2009). On the study of network coding with diversity. IEEE Transactions on Wireless Communications, 8(3), 1247–1259.CrossRefGoogle Scholar
  38. 38.
    Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). A new efficient low-complexity scheme for multi-source multi-relay cooperative networks. IEEE Transactions on Vehicular Technology, 60(2), 716–722.CrossRefGoogle Scholar
  39. 39.
    Seyfi, M., Muhaidat, S., Liang, J., & Uysal, M. (2011). Relay selection in dual-hop vehicular networks. IEEE Signal Processing Letters, 18(2), 134–137.CrossRefGoogle Scholar
  40. 40.
    Ge, Y., Wen, S., Ang, Y.-H., & Liang, Y.-C. (2010). Optimal relay selection in IEEE 802.16j multihop relay vehicular networks. IEEE Transactions on Vehicular Technology, 59(5), 2198–2206.CrossRefGoogle Scholar
  41. 41.
    Niu, H., Zhu, N., Sun, L., Vasilakos, A. V., & Sezaki, K. (2015). Security-embedded opportunistic user cooperation with full diversity. Wireless Networks. doi: 10.1007/s11276-015-1044-7.
  42. 42.
    Park, K.-H., Wang, T., & Alouini, M. (2013). On the jamming power allocation for secure amplify-and-forward relaying via cooperative jamming. IEEE Journal on Selected Areas in Communications, 9(31), 1741–1750.CrossRefGoogle Scholar
  43. 43.
    Fan, L., Lei, X., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2014). Secure multiuser commucations in multiple amplify-and-forward relay networks. IEEE Transactions on Communications, 62(9), 3299–3310.CrossRefGoogle Scholar
  44. 44.
    Hoang, T. M., Duong, T. Q., Suraweera, H. A., Tellambura, C., & Poor, H. V. (2015). Cooperative beamforming and user selection for improving the security of relay-aided systems. IEEE Transactions on Communications, 63(12), 5039–5051.CrossRefGoogle Scholar
  45. 45.
    Bao, V., L-Trung, N., & Debbah, M. (2013). Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Transactions on Wireless Communications, 12(12), 6076–6085.Google Scholar
  46. 46.
    Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.CrossRefGoogle Scholar
  47. 47.
    Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel. IEEE Communications Letters, 11(4), 334–336.CrossRefGoogle Scholar
  48. 48.
    Xu, F., Lau, F. C. M., Zhou, Q. F., & Yue, D. W. (2009). Outage performance of cooperative communication systems using opportunistic relaying and selection combining receiver. IEEE Signal Processing Letters, 16(4), 237–240.Google Scholar
  49. 49.
    Pappi, K. N., Diamantoulakis, P. D., Otrok, H., & Karagiannidis, G. K. (2015). Cloud compute-and-forward with relay cooperation. IEEE Transactions on Wireless Communications, 14(6), 3415–3428.CrossRefGoogle Scholar
  50. 50.
    Sun, L., Zhang, T., & Niu, H. (2011). Inter-relay interference in two-path digital relaying systems: Detrimental or beneficial? IEEE Transactions on Wireless Communications, 10(8), 2468–2473.CrossRefGoogle Scholar
  51. 51.
    Zhang, X., McKay, M. R., Zhou, X., & Heath, R. W. (2015). Artificial-noise-aided secure multi-antenna transmission with limited feedback. IEEE Transactions on Wireless Communications, 14(5), 2742–2754.CrossRefGoogle Scholar
  52. 52.
    Jayasinghe, K., Jayasinghe, P., Rajatheva, N., & Latva-aho, M. (2014). Secure beamforming design for physical layer network coding based MIMO two-way relaying. IEEE Communications Letters, 18(7), 1270–1273.CrossRefGoogle Scholar
  53. 53.
    Luo, S., Li, J., & Petropulu, A. P. (2013). Uncoordinated cooperative jamming for secret communications. IEEE Transactions on Information Forensics and Security, 8(7), 1081–1090.CrossRefGoogle Scholar
  54. 54.
    Wang, X., Tao, M., Mo, J., & Xu, Y. (2011). Power and subcarrier allocation for physical-layer security in OFDMA-based broadband wireless networks. IEEE Transactions on Information Forensics and Security, 6(3), 693–702.CrossRefGoogle Scholar
  55. 55.
    Mo, J., Tao, M., Liu, Y., & Wang, R. (2014). Secure beamforming for MIMO two-way communications with an untrusted relay. IEEE Transactions on Signal Processing, 62(9), 2185–2199.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Zou, Y., Wang, X., Shen, W., & Hanzo, L. (2014). Security versus reliability analysis of opportunistic relaying. IEEE Transactions on Vehicular Technology, 63(6), 2653–2661.CrossRefGoogle Scholar
  57. 57.
    Sun, L., Ren, P., Du, Q., Wang, Y., & Gao, Z. (2015). Security-aware relaying scheme for cooperative networks with untrusted relay nodes. IEEE Communications Letters, 19(3), 463–466.CrossRefGoogle Scholar
  58. 58.
    Sun, L., Du, Q., Ren, P., & Wang, Y. (2016). Two birds with one stone: Towards secure and interference-free D2D transmissions via constellation rotation. IEEE Transactions on Vehicular Technology, 65(10), 8767–8774.CrossRefGoogle Scholar
  59. 59.
    MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings of the Communications, 152(6), 1062–1068.CrossRefGoogle Scholar
  60. 60.
    Zhang, X., & Du, Q. (2006). Adaptive low-complexity erasure-correcting code-based protocols for QoS-driven mobile multicast services over wireless networks. IEEE Transactions on Vehicular Technology, 55(5), 1633–1647.CrossRefGoogle Scholar
  61. 61.
    Wang, X., Chen, W., & Cao, Z. (2011). SPARC: Superposition-aided rateless coding in wireless relay systems. IEEE Transactions on Vehicular Technology, 60(9), 4427–4438.CrossRefGoogle Scholar
  62. 62.
    Niu, H., Iwai, M., Sezaki, K., Sun, L., & Du, Q. (2014). Exploiting fountain codes for secure wireless delivery. IEEE Communications Letters, 18(5), 777–780.CrossRefGoogle Scholar
  63. 63.
    Boutros, J., & Viterbo, E. (1998). Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel. IEEE Transactions on Information Theory, 44(4), 1453–1467.MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.MATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations