Advertisement

Privacy Issues for Transportation Cyber Physical Systems

Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Transportation Cyber-Physical Systems (TCPS) developed a lot with the advancement of the transportation industry worldwide. The rapid proliferation of TCPS provides rich data and infinite possibilities for us to analyze and understand the complex inherent mechanism that governs the novel intelligence world. Also, TCPS open a range of new application scenarios, such as vehicular safety, energy efficiency, reduced pollution, and intelligent maintenance services. However, while enjoying the services and convenience provided by TCPS, users, vehicles, and even the systems might lose privacy during information transmission and processing. This chapter summarizes the state-of-art research findings on TCPS in a broad sense. First, we introduce the typical TCPS model and their basic mechanism of data communication. Secondly, considering the privacy issues of TCPS, we give a bird’s-eye view of the up-to-date literature on the problems and privacy protection approaches. Thirdly, we point out the most recently emerging challenges and the potential resolutions for privacy issues in TCPS.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Hubaux, J.-P., Capkun, S., & Luo, J. (2004). The security and privacy of smart vehicles. IEEE Security & Privacy Magazine 2 (LCA-ARTICLE-2004-007), 49–55.Google Scholar
  5. 5.
    Wu, Q., Domingo-Ferrer, J., & Gonzalez-Nicolas, U. (2010). Balanced trustworthiness, safety, and privacy in vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 59(2), 559–573. doi: 10.1109/TVT.2009.2034669.CrossRefGoogle Scholar
  6. 6.
    Xiong, G., Zhu, F., Liu, X., Dong, X., Huang, W., & Chen, S., et al. (2015). Cyber-physical-social system in intelligent transportation. IEEE/CAA Journal of Automatica Sinica, 2(3), 320–333. doi: 10.1109/JAS.2015.7152667.
  7. 7.
    Rajkumar, R. R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next computing revolution (2010).Google Scholar
  8. 8.
    Kalloniatis, C., & Evangelia, K. (2008). Addressing privacy requirements in system design: the pris method. Requirements Engineering, 13(3), 241–255. doi: 10.1007/s00766-008-0067-3.
  9. 9.
    Amin, S., Schwartz, G. A., & Hussain, A. (2013). In quest of benchmarking security risks to cyber-physical systems. IEEE Network, 27(1), 19–24. doi: 10.1109/MNET.2013.6423187.CrossRefGoogle Scholar
  10. 10.
    Amin, S., Schwartz, G. A., & Sastry, S. S. (2013). Security of interdependent and identical networked control systems. Automatica 49(1), 186–192. doi: 10.1016/j.automatica.2012.09.007.
  11. 11.
    Burmester, M., Magkos, E., & Chrissikopoulos, V. (2012). Modeling security in cyber physical systems. International Journal of Critical Infrastructure Protection 5(3), 118–126. doi: 10.1016/j.ijcip.2012.08.002.
  12. 12.
    Work, D., Bayen, A., & Jacobson, Q. (2008). Automotive cyber physical systems in the context of human mobility (2008).Google Scholar
  13. 13.
    Work, D., & Bayen, A. (2008). Impacts of the mobile internet on transportation cyberphysical systems: Traffic monitoring using smartphones.Google Scholar
  14. 14.
    Balaji, B., Al Faruque, M. A., Dutt, N., Gupta, R., & Agarwal, Y. (2015). Models, abstractions, and architectures: The missing links in cyber-physical systems.Google Scholar
  15. 15.
    Wang, D., Wang, Z., Shen, B., Alsaadi, F. E., & Hayat, T. (2016). Recent advances on filtering and control for cyber-physical systems under security and resource constraints. Journal of the Franklin Institute 353(11), 2451–2466. doi: 10.1016/j.jfranklin.2016.04.011.
  16. 16.
    Zhou, Y., Chen, S., Zhou, Y., Chen, M., & Xiao, Q. (2015). Privacy-preserving multi-point traffic volume measurement through vehicle-to-infrastructure communications. IEEE Transactions on Vehicular Technology, 64(12), 5619–5630. doi: 10.1109/TVT.2015.2487985.CrossRefGoogle Scholar
  17. 17.
    Ashritha, M., & Sridhar, C. S. (Jan 2015). Rsu based efficient vehicle authentication mechanism for vanets.Google Scholar
  18. 18.
    Liu, Y., & Jie, L. (2016). Scalable privacy-enhanced traffic monitoring in vehicular ad hoc networks. Soft Computing, 20(8), 3335–3346. doi: 10.1007/s00500-015-1737-y.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhou, J., Dong, X., Cao, Z., & Vasilakos, A. V. (2015). Secure and privacy preserving protocol for cloud-based vehicular dtns. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314. doi: 10.1109/TIFS.2015.2407326.CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Wu, Q., Domingo-Ferrer, J., Qin, B., & Hu, C. (2016). Distributed aggregate privacy-preserving authentication in vanets. IEEE Transactions on Intelligent Transportation Systems (99), 1–11. doi: 10.1109/TITS.2016.2579162.
  21. 21.
    Raya, M., & Hubaux, J.P. (2005). The security of vehicular ad hoc networks. In Proceedings of the 3rd ACM Workshop on Security of ad HOC and Sensor Networks (pp. 11–21).Google Scholar
  22. 22.
    Raya, M., & Hubaux, J. P. (2007). Securing vehicular ad hoc networks. Journal of Computer Security, 15(1), 39–68.CrossRefGoogle Scholar
  23. 23.
    Raya, M., Papadimitratos, P., Aad, I., Jungels, D., & Hubaux, J.-P. (2007). Eviction of misbehaving and faulty nodes in vehicular networks. IEEE Journal on Selected Areas in Communications, 25(8), 1557–1568.CrossRefGoogle Scholar
  24. 24.
    Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., & Sezaki, K. (2005). CARAVAN: Providing location privacy for VANET. ESCAR: Proc.Google Scholar
  25. 25.
    Guo, J., Baugh, J. P., & Wang, S. (2007). A group signature based secure and privacy-preserving vehicular communication framework. In Proceedings of the Mobile Network Vehicle Environment (pp. 103–108).Google Scholar
  26. 26.
    Lin, X., Sun, X., Ho, P. H., & Shen, X. (2007). GSIS: a secure and privacy-preserving protocol for vehicular communications. IEEE Transactions on Vehicular Technology, 56(6), 3442–3456.CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Wu, Q., Solanas, A., & Domingo-Ferrer, J. (2010). A scalable robust authentication protocol for secure vehicular communications. IEEE Transactions on Vehicular Technology, 59(4), 1606–1617.CrossRefGoogle Scholar
  28. 28.
    Li, J., Lu, H., & Guizani, M. (2015). ACPN: a novel authentication framework with conditional privacy-preservation and non-repudiation for VANETs. IEEE Transactions on Parallel and Distributed Systems, 26(4), 938–948.CrossRefGoogle Scholar
  29. 29.
    Zhang, L., Hu, C., Wu, Q., Domingo-Ferrer, J., & Qin, B. Privacy-preserving vehicular communication authentication with hierarchical aggregation and fast response. In IEEE Transactions on Computers, to be published. doi: 10.1109/TC.2015.2485225.
  30. 30.
    Zhang, C., Lu, R., Lin, X., Ho, P. H., & Shen, X. (2008). An efficient identity-based batch verification scheme for vehicular sensor networks, In The 27th Conference on Computer Communications INFOCOM 2008.Google Scholar
  31. 31.
    Kiltz, E., & Pietrzak, K. (2010). Leakage resilient elgamal encryption, In International Conference on the Theory and Application of Cryptology and Information Security (pp. 595–612).Google Scholar
  32. 32.
    Eiland, E., & Liebrock, L.: An application of information theory to intrusion detection. In Proceedings of the IWIA (pp. 119–134).Google Scholar
  33. 33.
    Feinstein, L., Schnackenberg, D., Balupari, R., & Kindred, D. (2003). Statistical approaches to DDoS attack detection and response. In Proceedings DARPA Information Survivability Conference & Exposition (pp. 303–314).Google Scholar
  34. 34.
    Golle, P., Greene, D., & Staddon, J. (2004). Detecting and correcting malicious data in VANETs. In Proceedings of the 1st ACM International Workshop on Vehicular Ad HOC Networks (pp. 29–37).Google Scholar
  35. 35.
    He, Z., Cai, Z., Cheng, S., & Wang, X. Approximate Aggregation for Tracking Quantiles in Wireless Sensor Networks. The 8th Annual International Conference on Combinatorial Optimization and Applications (COCOA2014).Google Scholar
  36. 36.
    Cheng, S., Cai, Z., Li, J., & Fang, X. (2015). Drawing dominant dataset from big sensory data in wireless sensor networks. In The 34th Annual IEEE International Conference on Computer Communications (INFOCOM 2015).Google Scholar
  37. 37.
    Han, M., Li, J., Cai, Z., & Han, Q. (2016). Privacy reserved influence maximization in GPS-enabled cyber-physical and online social networks ieee international conference on social computing and networking. In IEEE SocialCom 2016, Atlanta, GA, USA, October 8–10 (pp. 284–292).Google Scholar
  38. 38.
    Han, M., Han, Q., Li, L., Li, J., & Li, Y. (Accepted). Maximizing influence in sensed heterogenous social network with privacy preservation. International Journal of Sensor Networks (IJSNet).Google Scholar
  39. 39.
    Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., & Sezaki, K. (2005). Caravan: Providing location privacy for vanet. Technical report, DTIC Document.Google Scholar
  40. 40.
    Wang, F. Y. (2010). The emergence of intelligent enterprise: from CPS to CPSS. IEEE Intelligent Systems, 25(4), 85–88.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Information TechnologyKennesaw State UniversityMariettaGeorgia
  2. 2.Department of Computer ScienceGeorgia State UniversityAtlantaGeorgia

Personalised recommendations