Networked Control System: A Markovian Jump System Approach

Chapter

Abstract

This chapter proposes a packet-based control approach to networked control systems.

References

  1. 1.
    Billingsley, P.: Probability and Measure, 3rd edn, Wiley (1995)Google Scholar
  2. 2.
    Gao, H., Chen, T.: New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Autom. Control. 52(2), 328–334 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gao, H., Meng, X., Chen, T.: Stabilization of networked control systems with a new delay characterization. IEEE Trans. Autom. Control. 53(9), 2142–2148 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Georgiev, D., Tilbury, D.M.: Packet-based control: The \(H_2\)-optimal solution. Automatica 42(1), 137–144 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ghaoui, L.E., Oustry, F., AitRami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control. 42(8), 1171–1176 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Goodwin, G.C., Quevedo, D.E., Silva, E.I.: Architectures and coder design for networked control systems. Automatica 44(1), 248–257 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  8. 8.
    Hristu-Varsakelis, D., Zhang, L.: LQG control of networked control systems with access constraints and delays. Int. J. Control 81(8), 1266–1280 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Liu, M., Ho, D.W., Niu, Y.: Stabilization of Markovian jump linear system over networks with random communication delay. Automatica 45(2), 416–421 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mendez, P.M., Benitez, H.P.: Supervisory fuzzy control for networked control systems. ICIC Express Lett. 3(2), 233–238 (2009)Google Scholar
  11. 11.
    Meng, X., Lam, J., Gao, H.: Network-based \({H}_\infty \) control for stochastic systems. Int. J. Robust Nonlinear Control. 19(3), 295–312 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans. Autom. Control. 50(11), 1670–1680 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ren, J., Li, C.W., Zhao, D.Z.: Linearizing control of induction motor based on networked control systems. Int. J. Autom. Comput. 6(2), 192–197 (2009)CrossRefGoogle Scholar
  14. 14.
    Ren, T., Wang, C., Luo, X., Jing, Y., Dimirovski, G.M.: Robust controller design for ATM network with time-varying multiple time-delays. Int. J. Innov. Comput. Inf. Control. 5(8), 2341–2349 (2009)Google Scholar
  15. 15.
    Stallings, W.: Data and Computer Communications, 6th edn, Pearson/Prentice Hall (2007)Google Scholar
  16. 16.
    Tipsuwan, Y., Chow, M.Y.: Gain scheduler middleware: A methodology to enable existing controllers for networked control and teleoperation-part I: Networked control. IEEE Trans. Ind. Electron. 51(6), 1218–1227 (2004)CrossRefGoogle Scholar
  17. 17.
    Wang, B.F., Guo, G.: Kalman filtering with partial Markovian packet losses. Int. J. Autom. Comput. 6(4), 395–400 (2009)CrossRefGoogle Scholar
  18. 18.
    Wang, Y., Sun, Z.: \({H}_\infty \) control of networked control system via LMI approach. Int. J. Innov. Comput. Inf. Control. 3(2), 343–352 (2007)Google Scholar
  19. 19.
    Wang, Z., Ho, D.W.C., Liu, Y., Liu, X.: Robust \(H_Infinity\) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 684–691 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xia, Y., Zhu, Z., Mahmoud, M.S.: \(H_2\) control for networked control systems with Markovian data losses and delays. ICIC Express Lett. 3(3), 271–276 (2009)Google Scholar
  21. 21.
    Xie, D., Chen, X., Lv, L., Xu, N.: Asymptotical stabilisability of networked control systems: time-delay switched system approach. IET Control Theory Appl. 2(9), 743–751 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu, M., Wang, L., Chu, T., Xie, G.: Modelling and control of networked systems via jump system approach. IET Control Theory Appl. 2(6), 535–541 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, L., Shi, Y., Chen, T., Huang, B.: A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control. 50(8), 1177–1181 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhao, Y., Liu, G., Rees, D.: A predictive control based approach to networked wiener systems. Int. J. Innov. Comput. Inf. Control. 4(11), 2793–2802 (2008)Google Scholar
  25. 25.
    Zhao, Y., Liu, G., Rees, D.: Design of a packet-based control framework for networked control systems. IEEE Trans. Control. Syst. Technol. 17(4), 859–865 (2009)CrossRefGoogle Scholar
  26. 26.
    Zhao, Y.B., Liu, G.P., Rees, D.: Modeling and stabilization of continuous-time packet-based networked control systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(6), 1646–1652 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhivoglyadov, P., Middleton, R.: Networked control design for linear systems. Automatica 39(4), 743–750 (2003)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhu, X., Hua, C., Wang, S.: State feedback controller design of networked control systems with time delay in the plant. Int. J. Innov. Comput. Info. Control. 4(2), 283–290 (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd and Science Press, Beijing 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Zhejiang University of TechnologyHangzhouChina
  3. 3.Jinan UniversityJinanChina

Personalised recommendations