Robust Stochastic Stability

  • Yu Kang
  • Yun-Bo Zhao
  • Ping Zhao


This chapter investigates the robust output feedback \(H_{\infty }\) control for a class of uncertain Markovian jump linear systems with mode-dependent time-varying time delays. With known bounds of the system uncertainties and the control gain variations, we develop the sufficient conditions to guarantee the robust stochastic stability and the \(\gamma \)-disturbance \(H_{\infty }\) attenuation for the closed-loop system.


  1. 1.
    Benjelloun, K., Boukas, E.K.: Independent delay sufficient conditions for robust stability of uncertain linear time-delay systems with jumps. In: Proceedings of the 1997 American Control Conference, vol. 6, pp. 3814–3815. Albuquerque, NM (1997)Google Scholar
  2. 2.
    Benjelloun, K., Boukas, E.K., Costa, O.L.V.: \(H_{\infty }\) control for linear time-delay systems with Markovian jumping parameters. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 1567–1572 (1999)Google Scholar
  3. 3.
    Boukas, E.K., Liu, Z.K.: Output-feedback guaranteed cost control for uncertain time-delay systems with Markov jumps. In: Proceedings of the 2000 American Control Conference, vol. 4, pp. 2784–2788. Chicago, IL (2000)Google Scholar
  4. 4.
    Boukas, E.K., Liu, Z.K.: Output feedback robust stabilization of jump linear system with mode-dependent time-delays. In: Proceedings of the 2001 American Control Conference, vol. 6, pp. 4683–4688. Arlington, VA (2001)Google Scholar
  5. 5.
    Boukas, E.K., Liu, Z.K.: Deterministic and Stochastic Time Delay Systems. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Caines, P.E., Zhang, J.F.: On the adaptive control for jump parameter system via nonlinear filtering. SIAM J. control. Optim. 33(6), 1758–1777 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cao, Y.Y., James, L.: Robust \(H_{\infty }\) control of uncertain Markovian jump systems with time-delay. IEEE Trans. Autom. Control. 45(1), 77–83 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, W.H., Guan, Z.H., Yu, P.: Delay-dependent stability and \({H}_\infty \) control of uncertain discrete-time Markovian jump systems with mode-dependent time delays. Syst. Control Lett. 52(5), 361–376 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, W.H., Xu, J.X., Guan, Z.H.: Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays. IEEE Trans. Autom. Control. 48(12), 2270–2277 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Esfahani, S.H., Petersen, I.R.: An LMI approach to output-feedback-guaranteed cost control for uncertain time-delay systems. Int. J. Robust Nonlinear Control. 10(3), 157–174 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fridman, E., Shaked, U.: An improved stabilization method for linear time-delay systems. IEEE Trans. Autom. Control. 47(11), 1931–1937 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fridman, E., Shaked, U.: Delay-dependent stability and \({H}_\infty \) control: constant and time-varying delays. Int. J. Control. 76(1), 48–60 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gahinet, P.: Explicit controller formulas for LMI-based \({H}_\infty \) synthesis. Automatica 32(7), 1007–1014 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ge, S., Hong, F., Lee, T.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(1), 671–682 (2002)Google Scholar
  15. 15.
    Ge, S., Hong, F., Lee, T.: Robust adaptive control of nonlinear systems with unknown time delays. Automatica 41(7), 1181–1190 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hale, J.: Theory of Functional Differential Equations, 2nd edn. Springer, Berlin (1977)CrossRefMATHGoogle Scholar
  17. 17.
    Kreindler, E., Jameson, A.: Conditions for nonnegativeness of partitioned matrices. IEEE Trans. Autom. Control. 17(1), 147–148 (1972)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kushner, H.J.: Stochastic Stability and Control. Academic Press, New York (1967)MATHGoogle Scholar
  19. 19.
    Mariton, M.: Jump Linear Systems in Automatic Control. Marcel Dekker, New York (1990)Google Scholar
  20. 20.
    Mariton, M.: Control of nonlinear systems with Markovian parameter changes. IEEE Trans. Autom. Control. 36(2), 233–238 (1991)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Masubuchi, I., Ohara, A., Suda, N.: LMI-based controller synthesis: A unified formulation and solution. Int. J. Robust Nonlinear Control. 8(8), 669–686 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Moon, Y.S., Park, P., Kwon, W.H.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control. 74(14), 1447–1455 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Autom. Control. 44(4), 876–877 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wu, M., He, Y., She, J., Liu, G.: Delay-dependent criteria for stability of time-varying delay systems. Automatica 40(8), 1435–1439 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Xie, L.: Output feedback \(H_{\infty }\) control of systems with parameter uncertainty. Int. J. Control. 63(4), 741–750 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Xu, S., Chen, T.: H\(_\infty \) output feedback control for uncertain stochastic systems with time-varying delays. Automatica 40(12), 2091–2098 (2004)MathSciNetMATHGoogle Scholar
  27. 27.
    Xu, S., Chen, T.W., Lam, J.: Robust \(H_{\infty }\) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Autom. Control 48(5), 900–907 (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd and Science Press, Beijing 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Zhejiang University of TechnologyHangzhouChina
  3. 3.Jinan UniversityJinanChina

Personalised recommendations