Introduction to Markovian Jump Systems

Chapter

Abstract

This chapter first introduces the basic concepts of MJSs, and then some research topics including the robust stochastic stability, the imprecise jumping parameters, the nonlinear Markovian jump systems, the practical stability, etc. Notations, necessary definitions and useful lemmas are also given.

References

  1. 1.
    Abou-Kandil, H., Freiling, G., Jank, G.: Solution and asymptotic behavior of coupled Riccati equations in jump linear systems. IEEE Trans. Autom. Control 39(8), 1631–1636 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aliyu, M.D.S., Boukas, E.K.: \(H_{\infty }\) control for Markovian jump nonlinear systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 1, pp. 766–771 (1998)Google Scholar
  3. 3.
    Aliyu, M.D.S.: Dissipativity and stability of nonlinear jump systems. In: Proceedings of the 1999 American Control Conference, vol. 2, pp. 795–799. Phoenix, Arizona (1999)Google Scholar
  4. 4.
    Aliyu, M.D.S.: Passivity and stability of nonlinear systems with Markovian jump parameters. In: Proceedings of the 1999 American Control Conference, vol. 2, pp. 953–957. Phoenix, Arizona (1999)Google Scholar
  5. 5.
    Arslan, G., Basar, T.: Risk-sensitive adaptive trackers for strict-feedback systems with output measurements. IEEE Trans. Autom. Control 47(10), 1754–1758 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. Theory Methods Appl. 7(11), 1163–1173 (1983)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Basak, G., Bisi, A., Ghosh, M.: Stability of a random diffusion with linear drift. J. Math. Anal. Appl. 202(2), 604–622 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benjelloun, K., Boukas, E.K., Costa, O.L.V.: \(H_{\infty }\) control for linear time-delay systems with Markovian jumping parameters. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 1567–1572 (1999)Google Scholar
  9. 9.
    Benjelloun, K., Boukas, E.K., Shi, P.: Robust stabilizability of uncertain linear systems with Markovian jumping parameters. In: Proceedings of the 1997 American Control Conference, vol. 1, pp. 866–867. Albuquerque, NM (1997)Google Scholar
  10. 10.
    Benjelloun, K., Boukas, E.K.: Independent delay sufficient conditions for robust stability of uncertain linear time-delay systems with jumps. In: Proceedings of the 1997 American Control Conference, vol. 6, pp. 3814–3815. Albuquerque, NM (1997)Google Scholar
  11. 11.
    Benjelloun, K., Boukas, E.K.: Mean square stochastic stability of linear time-delay system with Markovian jumping parameters. IEEE Trans. Autom. Control 43(10), 1456–1460 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bergen, A.R.: Stability of systems with randomly time-varying parameters. IRE Trans. Autom. Control 5(4), 265–269 (1960)CrossRefGoogle Scholar
  13. 13.
    Boukas, E.K., Liu, Z.K., Al-Sunni, F.: Guaranteed cost control of Markov jump uncertain system with time-multiplied cost function. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4, pp. 4125–4130. Phoenix, Arizona USA (1999)Google Scholar
  14. 14.
    Boukas, E.K., Liu, Z.K.: Guaranteed cost control for discrete-time Markovian jump linear system with mode-dependent time-delays. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 3794–3798. Las Vegas, NV (2002)Google Scholar
  15. 15.
    Boukas, E.K., Liu, Z.K.: Output feedback robust stabilization of jump linear system with mode-dependent time-delays. In: Proceedings of the 2001 American Control Conference, vol. 6, pp. 4683–4688. Arlington, VA (2001)Google Scholar
  16. 16.
    Boukas, E.K., Liu, Z.K.: Output-feedback guaranteed cost control for uncertain time-delay systems with Markov jumps. In: Proceedings of the 2000 American Control Conference, vol. 4, pp. 2784–2788. Chicago, IL (2000)Google Scholar
  17. 17.
    Boukas, E.K., Shi, P., Nguang, S.K., Agarwal, R.K.: On designing \(H_{\infty }\) controller for a class of nonlinear Markovian jump systems with parametric uncertainties. In: Proceedings of the 1999 American Control Conference, pp. 970–974. San Diego, CA (1999)Google Scholar
  18. 18.
    Boukas, E.K., Benzaouia, A.: Stability of discrete-time linear systems with Markovian jumping parameters and constrained control. IEEE Trans. Autom. Control 47(3), 516–521 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Boukas, E.K., Liu, Z.K.: P.shi: Delay-dependent stability and output feedback stabilisation of Markov jump system with time-delay. IEEE Proc. Control Theory Appl. 149(5), 379–386 (2002)CrossRefGoogle Scholar
  20. 20.
    Boukas, E.K., Shi, P.: Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jumping parameters. Int. J. Robust Nonlinear Control 8(13), 1155–1167 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cao, Y.Y., James, L.: Robust \(H_{\infty }\) control of uncertain Markovian jump systems with time-delay. IEEE Trans. Autom. Control 45(1), 77–83 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Chen, W.H., Xu, J.X., Guan, Z.H.: Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays. IEEE Trans. Autom. Control 48(12), 2270–2277 (2003)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Chizeck, H.J., Willsky, A.S., Castanon, D.: Discrete-time Markovian-jump linear quadratic optimal control. Int. J. Control 43(1), 213–231 (1986)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Costa, E.E., Val, J.B.R.D.: On the detectability and observability of discrete-time Markov jump linear systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, pp. 2355–2360. Sydney, NSW (2000)Google Scholar
  25. 25.
    Costa, E.E., Val, J.B.R.D.: On the observability and detectability of continuous-time Markov jump linear systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 2, pp. 1994–1999 (2003)Google Scholar
  26. 26.
    Costa, O.L.V., Boukas, B.K.: Necessary and sufficient condition for robust stability and stabilizability of continuous-time linear systems with Markovian jumps. J. Optim. Theory Appl. 99(2), 359–379 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Darkhovskii, M., Leibovich, V.: Statistical stability and output signal moments of a class of systems with random variation of structure. Autom. Remote Control 32(10), 1560–1567 (1971)MathSciNetGoogle Scholar
  28. 28.
    Deng, H., Krstic, M.: Output-feedback stochastic nonlinear stabilization. IEEE Trans. Autom. Control 44(2), 328–333 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Deng, H., Krstic, M.: Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance. Syst. Control Lett. 39(3), 173–182 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Deng, H., Krstic, M., Williams, R.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Autom. Control 46(8), 1237–1253 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Doyle, B.J.C., Tannenbaum, A.: Feedback Control Theory. Academic, New York (1992)Google Scholar
  32. 32.
    Dragan, V., Morozan, T.: Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise. Stochastic Anal. Appl. 20(1), 33–92 (2002)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Dragan, V., Morozan, T.: The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping. IEEE Trans. Autom. Control 49(5), 665–675 (2004)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Ezal, K., Pan, Z., Kokotovic, P.V.: Locally optimal backstepping design. IEEE Trans. Autom. Control 45(2), 260–271 (2000)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Fang, Y., Loparo, K.A.: Stabilization of continuous-time jump linear systems. IEEE Trans. Autom. Control 47(10), 1590–1603 (2002)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Feng, X., Loparo, K.A., Ji, Y.D., Chizeck, H.J.: Stochastic stability properties of jump linear systems. IEEE Trans. Autom. Control 37(1), 38–53 (1992)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Fragoso, M.D., Baczynski, J.: Optimal control for continuous-time linear quadratic problems with infinite Markov jump parameters. SIAM J. Control Optimization 40(1), 270–297 (2001)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Freeman, R.A., Kokotovic, P.V.: Inverse optimality in robust stabilization. SIAM J. Control Optimization 34(4), 1365–1391 (1996)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Gajic, Z., Borno, I.: Lyapunov iterations for optimal control of jump linear systems at steady state. IEEE Trans. Autom. Control 40(11), 1971–1975 (1995)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Ge, S.S., Wang, J.: Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems. IEEE Trans. Neural Netw. 13(6), 1409–1419 (2002)CrossRefGoogle Scholar
  41. 41.
    Ge, S., Hong, F., Lee, T.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. B Cybern. 38(1), 671–682 (2002)Google Scholar
  42. 42.
    Ge, S., Hong, F., Lee, T.: Robust adaptive control of nonlinear systems with unknown time delays. Automatica 41(7), 1181–1190 (2005)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Haddad, W.M., Hayakawa, T., Chellaboina, V.: Robust adaptive control for nonlinear uncertain systems. Automatica 39(3), 551–556 (2003)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Hasminskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff Noordhoff, Amsterdam (1980)CrossRefGoogle Scholar
  45. 45.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  46. 46.
    Hristu-Varsakelis, D., Zhang, L.: LQG control of networked control systems with access constraints and delays. Int. J. Control 81(8), 1266–1280 (2008)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Huang, L.: Stability Theory. Peking Univetsity Press, Beijing (1992)Google Scholar
  48. 48.
    Huang, L.R., Mao, X.R.: On input-to-state stability of stochastic retarded systems with markovian switching. IEEE Trans. Autom. Control 54(8), 1898–1902 (2009)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Ji, Y., Chizeck, H.J.: Controllability, observability and discrete-time Markovian jump linear quadratic control. Int. J. Control 48(2), 481–498 (1988)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Ji, Y., Chizeck, H.J.: Controllability, stability, and continuous-time Markovian jump linear quadratic control. IEEE Trans. Autom. Control 35(7), 777–788 (1990)CrossRefMATHGoogle Scholar
  51. 51.
    Jiang, Z.P., Pomet, J.B.: Backstepping-based adaptive controllers for uncertain nonholonomic systems. In: Proceedings of the 34th IEEE Conference on Decision and Control, vol. 2, pp. 1573–1578 (1995)Google Scholar
  52. 52.
    Jiang, Z.P., Kanellakopoulos, I.: Global output-feedback tracking for a benchmark nonlinear system. IEEE Trans. Autom. Control 45(5), 1023–1027 (2000)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans. Autom. Control 44(2), 265–279 (1999)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Kanellakipoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Autom. Control 36(11), 1241–1253 (1991)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Practical Stability of Nonlinear Systems. World Scientific, Singapore (1990)CrossRefMATHGoogle Scholar
  56. 56.
    LaSalle, J.P., Lefschetz, S.: Stability by Liapunov’s Direct Method with Applications. Academic Press, New York (1961)MATHGoogle Scholar
  57. 57.
    Liao, X.: Theory, Methods and Application of Stability (in Chinese). Huazhong University of Science & Technology Press, Wuhan (1999)Google Scholar
  58. 58.
    Liu, Y., Zhang, J.: Reduced-order observer-based control design for nonlinear stochastic systems. Syst. Control Lett. 52(2), 123–135 (2004)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Liu, Y., Zhang, J.: Output-feedback adaptive stabilization control design for non-holonomic systems with strong non-linear drifts. Int. J. Control 78(7), 474–490 (2005)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Liu, Y., Zhang, J.: Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero-dynamics. SIAM J. Control Optimization 45(3), 885–926 (2006)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Liu, S.J., Zhang, J.F., Jiang, Z.P.: A notion of stochastic input-to-state stability and its application to stability of cascaded stochastic nonlinear systems. Acta Mathematicae Applicatae Sinica, English Series 24(1), 141–156 (2008)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Mao, X.R.: Exponential stability of stochastic differential equations. M. Dekker, New York (1994)MATHGoogle Scholar
  63. 63.
    Mao, X.R.: Stochastic Differential Equations and Applications. Horwood, England (1997)MATHGoogle Scholar
  64. 64.
    Mao, X.: Stability of stochastic differential equations with Markovian switching. Stochastic Processes Appl. 79(1), 45–67 (1999)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Mao, X.: Stochastic versions of the Lasalle theorem. J. Differential Equations 153(1), 175–195 (1999)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Mao, X., Matasov, A., Piunovskiy, A.: Stochastic differential delay equations with Markovian switching. Bernoulli 6(1), 73–90 (2000)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Mariton, M.: Jump linear quadratic control with random state discontinuities. IEEE Trans. Autom. Control 32(12), 1094–1097 (1987)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Mariton, M.: Jump linear quadratic control with random state discontinuities. Automatica 23, 237–240 (1987)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Mariton, M.: Detection delays, false alarm rates and the reconfiguration of control systems. Int. J. Control 49(3), 981–992 (1989)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Mariton, M.: Jump Linear Systems in Automatic Control. Marcel Dekker, New York (1990)Google Scholar
  71. 71.
    Mariton, M.: Control of nonlinear systems with Markovian parameter changes. IEEE Trans. Autom. Control 36(2), 233–238 (1991)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    A.Martynyuk, A., Sun, Z.Q.: Practical Stability and Applications (in Chinese). Science Press, Beijing (2004)Google Scholar
  73. 73.
    A.Martynyuk, A.: Methods and problems of practical stability of motion theory. Zagadnienia Drgan Nieliniowych 22, 9–46 (1984)Google Scholar
  74. 74.
    Mendez, P.M., Benitez, H.P.: Supervisory fuzzy control for networked control systems. ICIC Express Lett. 3(2), 233–238 (2009)Google Scholar
  75. 75.
    Morozan, T.: Stability and control for linear systems with jump Markov perturbations. Stochastic Analytic Appl. 23, 1015–1022 (1996)Google Scholar
  76. 76.
    Nakura, G., Ichikawa, A.: Stabilization of a nonlinear jump system. Syst. Control Lett. 47(1), 79–85 (2002)MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Pakshin, P.V., Retinsky, D.M.: Robust control of hybrid nonlinear systems with jumps of state vector. Nonlinear Control Syst. 1(3), 979–984 (2001)Google Scholar
  78. 78.
    Pan, Z., Basar, T.: Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J. Control Optimization 37(3), 957–995 (1999)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    Pan, Z., Ezal, K., Krener, A., Kokotovic, P.V.: Backstepping design with local optimality matching. IEEE Trans. Autom. Control 46(7), 1014–1027 (2001)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Rami, M.A., El-Ghaoui, L.: LMI optimization for nonstandard Riccati equations arising in stochastic control. IEEE Trans. Autom. Control 41(11), 1666–1671 (1996)MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Ren, J., Li, C.W., Zhao, D.Z.: Linearizing control of induction motor based on networked control systems. Int. J. Autom. Comput. 6(2), 192–197 (2009)CrossRefGoogle Scholar
  83. 83.
    Ren, T., Wang, C., Luo, X., Jing, Y., Dimirovski, G.M.: Robust controller design for ATM network with time-varying multiple time-delays. Int. J. Innovative Comput. Inf. Control 5(8), 2341–2349 (2009)Google Scholar
  84. 84.
    Rosenbloom, A.: Analysis of linear systems with randomly varying inputs and parameters. IRE Convention Record 4, 106 (1955)Google Scholar
  85. 85.
    Sathananthan, S., Keel, L.H.: Optimal practical stabilization and controllability of systems with Markovian jumps. Nonlinear Anal. 54(6), 1011–1027 (2003)MathSciNetCrossRefMATHGoogle Scholar
  86. 86.
    Shen, T.: \(H_{\infty }\) Control Theory and Application (in Chinese). Tsinghua University Press, Beijing (1996)Google Scholar
  87. 87.
    Shi, P., Boukas, E.K.: \(H_{\infty }\) control for Markovian jump linear systems with parametric uncertainty. J. Optimization Theory Appl. 95(1), 75–99 (1997)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Shi, P., Boukas, E.K., Agarwal, R.K.: Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE Trans. Autom. Control 44(11), 2139–2144 (1999)MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Sontag, E.D.: A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optimization 21(3), 462–471 (1983)MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    Souza, C.E.D., Fragoso, R.M.: \(H_{\infty }\) control for linear systems with Markovian jumping parameters. Control Theory Adv. Technol. 9(2), 457–466 (1993)Google Scholar
  91. 91.
    Sun, Z., Ge, S.S.: Switched Linear Systems: Control and Design. Springer, New York (2005)CrossRefMATHGoogle Scholar
  92. 92.
    Vidal, R., Chiuso, A., Soatto, S.: Observability and identifiability of jump linear systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 3614–3619. Las Vegas, NV (2002)Google Scholar
  93. 93.
    Wang, B.F., Guo, G.: Kalman filtering with partial Markovian packet losses. Int. J. Autom. Comput. 6(4), 395–400 (2009)CrossRefGoogle Scholar
  94. 94.
    Wang, Z.D., Lam, J., Liu, X.: Nonlinear filtering for state delayed systems with Markovian switching. IEEE Trans. Signal Process. 51(9), 2321–2328 (2003)MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    Wang, Z., Ho, D.W.C., Liu, Y., Liu, X.: Robust \(H_{\infty }\) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 684–691 (2009)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    Wu, H.: Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Trans. Autom. Control 49(4), 611–616 (2004)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    Xu, S., Chen, T.W., Lam, J.: Robust \(H_{\infty }\) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Automatic Control 48(5), 900–907 (2003)MathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    You, B.L.: Complemental Tutorial for Ordinary Differential Equations(in Chinese). Higher Education Press, Beijing (1981)Google Scholar
  99. 99.
    Yu, L.: Robust Control Linear Matrix Inequality Processing Method (in Chinese). Tsinghua University Press, Beijing (2002)Google Scholar
  100. 100.
    Yuan, C., Mao, X.: Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stoch. Processes Appl. 103(2), 277–291 (2003)MathSciNetCrossRefMATHGoogle Scholar
  101. 101.
    Yuan, C.G., Mao, X.R.: Robust stability and controllability of stochastic differential delay equations with Markovian switching. Automatica 40(3), 343–354 (2004)MathSciNetCrossRefMATHGoogle Scholar
  102. 102.
    Yuan, C.G., Zou, J.Z., Mao, X.R.: Stability in distribution of stochastic differential delay equations with Markovian switching. Syst. Control Lett. 50(3), 195–207 (2003)MathSciNetCrossRefMATHGoogle Scholar
  103. 103.
    Zames, G.: Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Autom. Control 26(2), 301–320 (1981)MathSciNetCrossRefMATHGoogle Scholar
  104. 104.
    Zhao, Y.B., Liu, G.P., Rees, D.: Modeling and stabilization of continuous-time packet-based networked control systems. IEEE Trans. Syst. Man Cybern. B Cybern. 39(6), 1646–1652 (2009)CrossRefGoogle Scholar
  105. 105.
    Zhao, P., Kang, Y., Zhai, D.H.: On input-to-state stability of stochastic nonlinear systems with markovian jumping parameters. Int. J. Control 85(4), 343–349 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd and Science Press, Beijing 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Zhejiang University of TechnologyHangzhouChina
  3. 3.Jinan UniversityJinanChina

Personalised recommendations