Skip to main content

Graphene/Metal Nanowire Hybrid Transparent Conductive Films

  • Chapter
  • First Online:
Book cover Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

Abstract

Transparent conductive films (TCFs) are widely used in solar cells, transistors, displays, sensors, and energy storage systems. New devices are setting additional criteria for TCFs: in addition to good optical transmittance and electrical conductivity, good chemical and thermal stability, compatibility with other device components, ease of integration in flexible electronics, and obviously low-cost are desirable. Since indium tin oxide (ITO) films cannot fulfill all these requirements, other options are sought. There are several promising alternatives involving networks of single component (e.g., carbon nanotubes (CNTs), Ag or Cu nanowires (NWs)) or multi-component (e.g., CNT/Ag NW, graphene/Cu NW, etc.) TCFs. Specifically, multi-component hybrid nanostructured films, in which the overall film performance can be improved due to synergy between individual components, are of a great importance in development of new TCFs. In this chapter, we present an overview of progress made in fabrication of hybrid nanostructured TCFs based on the assembly of one dimensional (1D) metal nanowires and two dimensional (2D) graphene films. Optoelectrical properties of such films can be comparable to/or better than ITO films. The concept of nanostructured hybrid films is expected to open up possibilities for developing next generation TCFs with multiple functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Ellmer, Nat. Photonics 6, 9 (2012)

    Article  Google Scholar 

  2. D.S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482 (2011)

    Article  Google Scholar 

  3. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  Google Scholar 

  4. S.T. Lee, Z.Q. Gao, L.S. Hung, Appl. Phys. Lett. 75, 1404 (1999)

    Article  Google Scholar 

  5. M.P. de Jong, D.P.L. Simons, M.A. Reijme, L.J. van Ijzendoorn, A.W. Denier van der Gon, M.J.A. de Voigt, H.H. Brongersma, R.W. Gymer, Synth. Met. 110, 1 (2000)

    Article  Google Scholar 

  6. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24, 580 (2012)

    Article  Google Scholar 

  7. S. Savagatrup et al., Energy Environ. Sci. 8, 55 (2015)

    Article  Google Scholar 

  8. M.G. Kang, L.J. Guo, Adv. Mater. 19, 1391 (2007)

    Article  Google Scholar 

  9. M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Science 309, 1215 (2005)

    Article  Google Scholar 

  10. F. Mirri, A.W.K. Ma, T.T. Hsu, N. Behabtu, S.L. Eichmann, C.C. Young, D.E. Tsentalovich, M. Pasquali, ACS Nano 6, 9737 (2012)

    Article  Google Scholar 

  11. Q. Cao, J.A. Rogers, Adv. Mater. 21, 29 (2009)

    Article  Google Scholar 

  12. N. Pimparkar, M.A. Alam, IEEE Electron Device Lett. 29, 1037 (2008)

    Article  Google Scholar 

  13. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)

    Article  Google Scholar 

  14. A.B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008)

    Article  Google Scholar 

  15. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  Google Scholar 

  16. Q. Zheng, Z. Li, J. Yang, J.-K. Kim, Prog. Mater Sci. 64, 200 (2014)

    Article  Google Scholar 

  17. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)

    Article  Google Scholar 

  18. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Nano Lett. 9, 4359 (2009)

    Article  Google Scholar 

  19. C. Jeong, P. Nair, M. Khan, M. Lundstrom, M.A. Alam, Nano Lett. 11, 5020 (2011)

    Article  Google Scholar 

  20. I.N. Kholmanov et al., Nano Lett. 12, 5679 (2012)

    Article  Google Scholar 

  21. Y. Zhu, Z. Sun, Z. Yan, Z. Jin, J.M. Tour, ACS Nano 5, 6472 (2011)

    Article  Google Scholar 

  22. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  23. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  Google Scholar 

  24. X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008)

    Article  Google Scholar 

  25. V. Galstyan, E. Comini, I. Kholmanov, G. Faglia, G. Sberveglieri, Rsc Adv. 6, 34225 (2016)

    Article  Google Scholar 

  26. I.N. Kholmanov et al., ACS Nano 6, 5157 (2012)

    Article  Google Scholar 

  27. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394 (2007)

    Article  Google Scholar 

  28. I.N. Kholmanov et al., ACS Nano 7, 1811 (2013)

    Article  Google Scholar 

  29. H.-J. Shin et al., Adv. Func. Mater. 19, 1987 (2009)

    Article  Google Scholar 

  30. M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chemistry. Eur J 15, 6116 (2009)

    Article  Google Scholar 

  31. Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, J. Mater. Chem. 20, 743 (2010)

    Article  Google Scholar 

  32. Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-M. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191 (2011)

    Article  Google Scholar 

  33. X. Mei, J. Ouyang, Carbon 49, 5389 (2011)

    Article  Google Scholar 

  34. S.H. Domingues et al., Carbon 63, 454 (2013)

    Article  Google Scholar 

  35. X. Wang, I. Kholmanov, H. Chou, R.S. Ruoff, ACS Nano 9, 8737 (2015)

    Article  Google Scholar 

  36. X. Li et al., Science 324, 1312 (2009)

    Article  Google Scholar 

  37. S. Bae et al., Nat Nano 5, 574 (2010)

    Article  Google Scholar 

  38. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat Nano 3, 491 (2008)

    Article  Google Scholar 

  39. G.-X. Ni et al., ACS Nano 6, 1158 (2012)

    Article  Google Scholar 

  40. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat Nano 3, 206 (2008)

    Article  Google Scholar 

  41. P.Y. Huang et al., Nature 469, 389 (2011)

    Article  Google Scholar 

  42. O.V. Yazyev, S.G. Louie, Nat. Mater. 9, 806 (2010)

    Article  Google Scholar 

  43. I.N. Kholmanov, J. Edgeworth, E. Cavaliere, L. Gavioli, C. Magnuson, R.S. Ruoff, Adv. Mater. 23, 1675 (2011)

    Article  Google Scholar 

  44. S. Karoui, H. Amara, C. Bichara, F. Ducastelle, ACS Nano 4, 6114 (2010)

    Article  Google Scholar 

  45. Q. Yu et al., Nat. Mater. 10, 443 (2011)

    Article  Google Scholar 

  46. L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955 (2010)

    Article  Google Scholar 

  47. A.R. Rathmell, B.J. Wiley, Adv. Mater. 23, 4798 (2011)

    Article  Google Scholar 

  48. D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C. de Mello, Adv. Mater. 23, 4371 (2011)

    Article  Google Scholar 

  49. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M. Greyson Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Nat. Mater. 11, 241 (2012)

    Article  Google Scholar 

  50. H. Wu et al., Nat Nano 8, 421 (2013)

    Article  Google Scholar 

  51. S.R. Das, Q. Nian, M. Saei, S. Jin, D. Back, P. Kumar, D.B. Janes, M.A. Alam, G.J. Cheng, ACS Nano 9, 11121 (2015)

    Article  Google Scholar 

  52. H. Yamaguchi, G. Eda, C. Mattevi, H. Kim, M. Chhowalla, ACS Nano 4, 524 (2010)

    Article  Google Scholar 

  53. A.R. Rathmell, M. Nguyen, M. Chi, B.J. Wiley, Nano Lett. 12, 3193 (2012)

    Article  Google Scholar 

  54. C.-K. Wu, M. Yin, S. O’Brien, J.T. Koberstein, Chem. Mater. 18, 6054 (2006)

    Article  Google Scholar 

  55. C.E. Dubé, B. Workie, S.P. Kounaves, A. Robbat, M.L. Aksub, G. Davies, J. Electrochem. Soc. 142, 3357 (1995)

    Article  Google Scholar 

  56. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    Article  Google Scholar 

  57. M.-S. Lee et al., Nano Lett. 13, 2814 (2013)

    Article  Google Scholar 

  58. B. Deng et al., Nano Lett. 15, 4206 (2015)

    Article  Google Scholar 

  59. J. Liang, H. Bi, D. Wan, F. Huang, Adv. Func. Mater. 22, 1267 (2012)

    Article  Google Scholar 

  60. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS Nano 8, 1590 (2014)

    Article  Google Scholar 

  61. R. Das Suprem, S. Sadeque, C. Jeong, R. Chen, A. Alam Muhammad, B. Janes David, Nanophotonics, 180 (2016)

    Google Scholar 

  62. S. Lupu, C. Mihailciuc, L. Pigani, R. Seeber, N. Totir, C. Zanardi, Electrochem. Commun. 4, 753 (2002)

    Article  Google Scholar 

  63. A.A. Karyakin, Electroanalysis 13, 813 (2001)

    Article  Google Scholar 

  64. O. Makowski, J. Stroka, P.J. Kulesza, M.A. Malik, Z. Galus, J. Electroanal. Chem. 532, 157 (2002)

    Article  Google Scholar 

  65. M. Deepa, A.K. Srivastava, M. Kar, S.A. Agnihotry, J. Phys. D Appl. Phys. 39, 1885 (2006)

    Article  Google Scholar 

  66. P.R. Somani, S. Radhakrishnan, Mater. Chem. Phys. 77, 117 (2003)

    Article  Google Scholar 

  67. A.E. Aliev, H.W. Shin, Solid State Ionics 154–155, 425 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kholmanov thanks Prof. R. Ruoff for his collaboration, and would like to acknowledge the support from Tokyo Electron Ltd.—customized Semiconductor Research Corporation (Project#2009-OJ-1873). Prof. Alam will like to acknowledge his long term collaborations: Prof. D. Janes, Prof. J. Rogers, Prof. Shakouri, Dr. S. Das, Dr. R. Chen, Dr. C. Jeong. The work was supported by Semiconductor Research Corporation (Project # 2009-OJ-1873) and National Science Foundation Grant ECCS 1408346. Prof. Sberveglieri would like to acknowledge the support from European Union Research and Innovation Funding Program FP7 (Project# FP7-ICT-2013-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskandar Kholmanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kholmanov, I., Sberveglieri, G., Alam, M.A. (2017). Graphene/Metal Nanowire Hybrid Transparent Conductive Films. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_5

Download citation

Publish with us

Policies and ethics