Skip to main content

Synthesis, Characterization and Applications of Graphene Quantum Dots

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

Abstract

Graphene quantum dots (GQDs) represent unique zero-dimensional (0D) carbon materials with the lateral size below 100 nm. It possesses similar characteristics to graphene including large surface area, high electronic mobility, non-toxicity and chemical stability. Moreover, its special nanoscale structure exhibits new phenomena due to quantum confinement and edge effects that give its distinct chemical, optical and physical properties, commonly nonzero bandgap and photoluminescence. The tunable properties by sizes and functional groups make the GQDs potential materials for various applications in recent years. In this chapter, we will discuss the synthesis, characterization and applications of GQDs. In general, there are two approaches for GQD synthesis including top-down preparation and bottom-up methods. Possible characterization techniques include spectroscopic methods such as absorbance, Raman, photoluminescence, infrared and X-ray photoelectron spectroscopies to analyze their electron states, fluorescence properties, functional group compositions and vibrational patterns, and microscopic methods such as transmission electron microcopy (TEM) and atomic force microscopy (AFM) to study their surface morphologies and crystalline structures. We will further discuss the potential applications of GQDs in the fields of biomedicine, biosensing, optoelectronics, and energy conversion and storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2014)

    Article  Google Scholar 

  2. Z. Wang, H. Zeng, L. Sun, Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J. Mater. Chem. C 3(6), 1157–1165 (2015)

    Article  Google Scholar 

  3. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson et al., Chaotic Dirac Billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)

    Article  Google Scholar 

  4. S. Benítez-Martínez, M. Valcárcel, Graphene quantum dots in analytical science. TrAC Trends Anal. Chem. 72, 93–113 (2015)

    Article  Google Scholar 

  5. Y. Dong, J. Lin, Y. Chen, F. Fu, Y. Chi, G. Chen, Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6(13), 7410–7415 (2014)

    Article  Google Scholar 

  6. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620–1636 (2015)

    Article  Google Scholar 

  7. X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Func. Mater. 25(31), 4929–4947 (2015)

    Article  Google Scholar 

  8. S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 7(2), 1239–1245 (2013)

    Article  Google Scholar 

  9. R. Ye, Z. Peng, A. Metzger et al., Bandgap engineering of coal-derived graphene quantum dots. ACS Appl. Mater. Interfaces. 7(12), 7041–7048 (2015)

    Article  Google Scholar 

  10. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. (Camb.) 48(31), 3686–3699 (2012)

    Article  Google Scholar 

  11. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 5(10), 4015–4039 (2013)

    Article  Google Scholar 

  12. X. Li, S. Zhang, S.A. Kulinich, Y. Liu, H. Zeng, Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4 (2014)

    Google Scholar 

  13. Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivatives: consensus, debates and challenges. Nanoscale 8(15), 7794–7807 (2016)

    Article  Google Scholar 

  14. R. Liu, D. Wu, X. Feng, K. Mullen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133(39), 15221–15223 (2011)

    Article  Google Scholar 

  15. J. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, D. Yue, Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale 8(8), 4742–4747 (2016)

    Article  Google Scholar 

  16. W.-J. Niu, Y. Li, R.-H. Zhu, D. Shan, Y.-R. Fan, X.-J. Zhang, Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens. Actuators B Chem. 218, 229–236 (2015)

    Article  Google Scholar 

  17. S. Zhu, Q. Meng, L. Wang et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. Engl. 52(14), 3953–3957 (2013)

    Article  Google Scholar 

  18. D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22(6), 734–738 (2010)

    Article  Google Scholar 

  19. Z. Gan, S. Xiong, X. Wu et al., Mechanism of Photoluminescence from chemically derived graphene oxide: role of chemical reduction. Adv. Opt. Mat. 1(12), 926–932 (2013)

    Article  Google Scholar 

  20. Y. Deng, X. Chen, F. Wang, X. Zhang, D. Zhao, D. Shen, Environment-dependent photon emission from solid state carbon dots and its mechanism. Nanoscale 6(17), 10388–10393 (2014)

    Article  Google Scholar 

  21. S.K. Cushing, M. Li, F. Huang, N. Wu, Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano. 8(1), 1002–1013 (2014)

    Article  Google Scholar 

  22. Y. Dong, H. Pang, H.B. Yang et al., Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 52(30), 7800–7804 (2013)

    Article  Google Scholar 

  23. T.F. Yeh, W.L. Huang, C.J. Chung et al., Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. J. Phys. Chem. Lett. 7(11), 2087–2092 (2016)

    Article  Google Scholar 

  24. Z.-C. Yang, M. Wang, A.M. Yong et al., Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47(42), 11615–11617 (2011)

    Article  Google Scholar 

  25. S. Kim, S.W. Hwang, M.-K. Kim et al., Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 6(9), 8203–8208 (2012)

    Article  Google Scholar 

  26. H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano (2015)

    Google Scholar 

  27. H. Tetsuka, A. Nagoya, T. Fukusumi, T. Matsui, Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 28(23), 4632–4638 (2016)

    Article  Google Scholar 

  28. L. Cao, X. Wang, M.J. Meziani et al., Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007)

    Article  Google Scholar 

  29. E. Lee, J. Ryu, J. Jang, Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based DSSCs. Chem. Commun. (Camb.) 49(85), 9995–9997 (2013)

    Article  Google Scholar 

  30. S. Zhu, J. Zhang, X. Liu et al., Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2(7), 2717 (2012)

    Article  Google Scholar 

  31. J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. (Camb.) 47(9), 2580–2582 (2011)

    Article  Google Scholar 

  32. X. Wen, P. Yu, Y.R. Toh, X. Ma, J. Tang, On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. (Camb.) 50(36), 4703–4706 (2014)

    Article  Google Scholar 

  33. C. Frigerio, D.S. Ribeiro, S.S. Rodrigues et al., Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal. Chim. Acta 735, 9–22 (2012)

    Article  Google Scholar 

  34. L.-L. Li, J. Ji, R. Fei et al., A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Func. Mater. 22(14), 2971–2979 (2012)

    Article  Google Scholar 

  35. Y. Chen, Y. Dong, H. Wu, C. Chen, Y. Chi, G. Chen, Electrochemiluminescence sensor for hexavalent chromium based on the graphene quantum dots/peroxodisulfate system. Electrochim. Acta 151, 552–557 (2015)

    Article  Google Scholar 

  36. X. Du, D. Jiang, Q. Liu, G. Zhu, H. Mao, K. Wang, Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst 140(4), 1253–1259 (2015)

    Article  Google Scholar 

  37. S. Zhu, J. Zhang, C. Qiao et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. (Camb.) 47(24), 6858–6860 (2011)

    Article  Google Scholar 

  38. Y. Dong, C. Chen, X. Zheng et al., One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 22(18), 8764 (2012)

    Article  Google Scholar 

  39. S. Zhu, J. Zhang, S. Tang et al., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22(22), 4732–4740 (2012)

    Article  Google Scholar 

  40. J. Peng, W. Gao, B.K. Gupta et al., Graphene quantum dots derived from carbon fibers. Nano Lett. 12(2), 844–849 (2012)

    Article  Google Scholar 

  41. Y. Sun, S. Wang, C. Li et al., Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 15(24), 9907–9913 (2013)

    Article  Google Scholar 

  42. Y. Shin, J. Lee, J. Yang et al., Mass production of graphene quantum dots by one-pot synthesis directly from graphite in high yield. Small 10(5), 866–870 (2014)

    Article  Google Scholar 

  43. F. Yang, M. Zhao, B. Zheng, D. Xiao, L. Wu, Y. Guo, Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J. Mater. Chem. 22(48), 25471 (2012)

    Article  Google Scholar 

  44. H. Yoon, Y.H. Chang, S.H. Song et al., Intrinsic photoluminescence emission from subdomained graphene quantum dots. Adv. Mater. (2016)

    Google Scholar 

  45. M. Zhang, L. Bai, W. Shang et al., Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22(15), 7461 (2012)

    Article  Google Scholar 

  46. Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869 (2012)

    Article  Google Scholar 

  47. G.S. Bumbrah, R.M. Sharma, Raman spectroscopy—basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 6(3), 209–215 (2016)

    Google Scholar 

  48. D. Qu, M. Zheng, L. Zhang et al., Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294 (2014)

    Article  Google Scholar 

  49. Y. Shin, J. Park, D. Hyun et al., Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale 7(13), 5633–5637 (2015)

    Article  Google Scholar 

  50. Z. Luo, G. Qi, K. Chen et al., Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv. Func. Mater. 26(16), 2739–2744 (2016)

    Article  Google Scholar 

  51. W. Zhang, Y. Liu, X. Meng et al., Graphenol defects induced blue emission enhancement in chemically reduced graphene quantum dots. Phys. Chem. Chem. Phys. 17(34), 22361–22366 (2015)

    Article  Google Scholar 

  52. P. Gong, K. Hou, X. Ye, L. Ma, J. Wang, S. Yang, Synthesis of highly luminescent fluorinated graphene quantum dots with tunable fluorine coverage and size. Mater. Lett. 143, 112–115 (2015)

    Article  Google Scholar 

  53. R. Ye, C. Xiang, J. Lin et al., Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013)

    Google Scholar 

  54. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6(20), 11988–11994 (2014)

    Article  Google Scholar 

  55. L. Wang, W. Li, B. Wu et al., Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 300, 75–82 (2016)

    Article  Google Scholar 

  56. L. Lin, S. Zhang, Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. (Camb.) 48(82), 10177–10179 (2012)

    Article  Google Scholar 

  57. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006)

    Article  Google Scholar 

  58. Y. Dong, J. Shao, C. Chen et al., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12), 4738–4743 (2012)

    Article  Google Scholar 

  59. X. Zhou, Y. Zhang, C. Wang et al., Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6(8), 6592–6599 (2012)

    Article  Google Scholar 

  60. J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36(1), 97–101 (2012)

    Article  Google Scholar 

  61. J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-Pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375 (2009)

    Google Scholar 

  62. L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009)

    Article  Google Scholar 

  63. J. Zhou, C. Booker, R. Li et al., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129(4), 744–745 (2007)

    Article  Google Scholar 

  64. Y. Li, Y. Hu, Y. Zhao et al., An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23(6), 776–780 (2011)

    Article  Google Scholar 

  65. D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry 18(39), 12522–12528 (2012)

    Article  Google Scholar 

  66. A. Ananthanarayanan, X. Wang, P. Routh et al., Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Func. Mater. 24(20), 3021–3026 (2014)

    Article  Google Scholar 

  67. S. Zhuo, M. Shao, S.-T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6(2), 1059–1064 (2012)

    Article  Google Scholar 

  68. H. Li, X. He, Y. Liu et al., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49(2), 605–609 (2011)

    Article  Google Scholar 

  69. L. Wang, X. Chen, Y. Lu, C. Liu, W. Yang, Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon 94, 472–478 (2015)

    Article  Google Scholar 

  70. J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu, K.P. Loh, Transforming C60 molecules into graphene quantum dots. Nat. Nano 6(4), 247–252 (2011)

    Article  Google Scholar 

  71. C.K. Chua, Z. Sofer, P. Šimek et al., Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9(3), 2548–2555 (2015)

    Article  Google Scholar 

  72. H. Yang, W. Liu, C. Ma et al., Gold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochim. Acta 123, 470–476 (2014)

    Article  Google Scholar 

  73. J. Gu, X. Zhang, A. Pang, J. Yang, Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology 27(16), 165704 (2016)

    Article  Google Scholar 

  74. J. Schneider, C.J. Reckmeier, Y. Xiong, et al. Molecular fluorescence in citric acid-based carbon dots. J. Phys. Chem. C. 121(3), 2014–2022 (2017).

    Google Scholar 

  75. S. Qu, D. Zhou, D. Li et al., Toward efficient orange emissive carbon nanodots through conjugated sp-domain controlling and surface charges engineering. Adv. Mater. (2016)

    Google Scholar 

  76. F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, K. Okuyama, Role of C-N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci. Rep. 6, 21042 (2016)

    Article  Google Scholar 

  77. J.C. Hebden, S.R. Arridge, D.T. Delpy, Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol. 42(5), 825 (1997)

    Article  Google Scholar 

  78. T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003)

    Article  Google Scholar 

  79. W. Cai, X. Chen, Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11), 1840–1854 (2007)

    Article  Google Scholar 

  80. M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101 (2006)

    Article  Google Scholar 

  81. Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, B. Yang, Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013)

    Article  Google Scholar 

  82. M. Zhang, R.R. Naik, L. Dai, Carbon Nanomaterials for Biomedical Applications, vol. 5 (Springer, 2015)

    Google Scholar 

  83. X. Zhu, Y. Liu, P. Li, Z. Nie, J. Li, Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst 141(15), 4541–4553 (2016)

    Article  Google Scholar 

  84. A. Cayuela, M.L. Soriano, C. Carrillo-Carrion, M. Valcarcel, Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem. Commun. (Camb.) 52(7), 1311–1326 (2016)

    Article  Google Scholar 

  85. D. Jiang, Y. Chen, N. Li et al., Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS ONE 10(12), e0144906 (2015)

    Article  Google Scholar 

  86. J.-E. Lee, I. In, H. Lee, K.D. Lee, J.H. Jeong, S.Y. Park, Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 10(10), 3736–3744 (2013)

    Article  Google Scholar 

  87. K.L. Schroeder, R.V. Goreham, T. Nann, Graphene quantum dots for theranostics and bioimaging. Pharm. Res. (2016)

    Google Scholar 

  88. J. Lin, X. Chen, P. Huang, Graphene-based nanomaterials for bioimaging. Adv. Drug Deliv. Rev. (2016)

    Google Scholar 

  89. Y. Du, S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8(5), 2532–2543 (2016)

    Article  Google Scholar 

  90. C. Moina, G. Ybarra, Fundamentals and applications of immunosensors. Adv. Immunoassay Technol. 65–80 (2012)

    Google Scholar 

  91. X. Wang, L. Chen, X. Su, S. Ai, Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup. J. Biosens. Bioelectron. 47, 171–177 (2013)

    Article  Google Scholar 

  92. H. Zhao, Y. Chang, M. Liu, S. Gao, H. Yu, X. Quan, A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem. Commun. (Camb.) 49(3), 234–236 (2013)

    Article  Google Scholar 

  93. J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu, S. Chen, Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuators B Chem. 196, 532–538 (2014)

    Article  Google Scholar 

  94. L. Li, W. Li, C. Ma, H. Yang, S. Ge, J. Yu, Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt. Sens. Actuators B Chem. 202, 314–322 (2014)

    Article  Google Scholar 

  95. H. Pei, S. Zhu, M. Yang, R. Kong, Y. Zheng, F. Qu, Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 74, 909–914 (2015)

    Article  Google Scholar 

  96. Y. Dong, H. Wu, P. Shang, X. Zeng, Y. Chi, Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Nanoscale 7(39), 16366–16371 (2015)

    Article  Google Scholar 

  97. D. Bhatnagar, V. Kumar, A. Kumar, I. Kaur, Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens. Bioelectron. 79, 495–499 (2016)

    Article  Google Scholar 

  98. D. Wu, Y. Liu, Y. Wang et al., Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci. Rep. 6, 20511 (2016)

    Article  Google Scholar 

  99. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Nano-formulations of drugs: recent developments, impact and challenges. Biochimie (2016)

    Google Scholar 

  100. M.X. Zhao, B.J. Zhu, The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 11(1), 207 (2016)

    Article  Google Scholar 

  101. H. Chen, Z. Wang, S. Zong et al., A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale 7(37), 15477–15486 (2015)

    Article  Google Scholar 

  102. Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008)

    Article  Google Scholar 

  103. N. Al Abdullah, J.E. Lee, I. In et al., Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 10(10), 3736–3744 (2013)

    Google Scholar 

  104. C. Wang, C. Wu, X. Zhou et al., Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep. 3, 2852 (2013)

    Article  Google Scholar 

  105. X. Wang, X. Sun, J. Lao et al., Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B Biointerfaces 122, 638–644 (2014)

    Article  Google Scholar 

  106. P. Nigam, S. Waghmode, M. Louis, S. Wangnoo, P. Chavan, D. Sarkar, Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mat. Chem. B. 2(21), 3190–3195 (2014)

    Article  Google Scholar 

  107. O. Lv, Y. Tao, Y. Qin et al., Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Mater. Sci. Eng. C Mater. Biol. Appl. 67, 478–485 (2016)

    Article  Google Scholar 

  108. X. Wang, G. Sun, N. Li, P. Chen, Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45(8), 2239–2262 (2016)

    Article  Google Scholar 

  109. M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31(4), 415–428 (2014)

    Article  Google Scholar 

  110. K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, A.L. Rogach, Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9(5), 590–603 (2014)

    Article  Google Scholar 

  111. Y. Zhang, C. Xie, H. Su et al., Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett. 11(2), 329–332 (2010)

    Article  Google Scholar 

  112. W. Chung, H. Jung, C.H. Lee, S.H. Kim, Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals. Opt. Express 20(22), 25071–25076 (2012)

    Article  Google Scholar 

  113. F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter, C. Liu, One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mat. 22(16), 4528–4530 (2010)

    Google Scholar 

  114. Z. Wu, D. Ma, Recent advances in white organic light-emitting diodes. Mat. Sci. Eng. R Rep. 107, 1–42 (2016)

    Article  Google Scholar 

  115. F. So, J. Kido, P. Burrows, Organic light-emitting devices for solid-state lighting. MRS Bull. 33(07), 663–669 (2008)

    Article  Google Scholar 

  116. Q. Wang, D. Ma, Management of charges and excitons for high-performance white organic light-emitting diodes. Chem. Soc. Rev. 39(7), 2387–2398 (2010)

    Article  Google Scholar 

  117. J. Chen, F. Zhao, D. Ma, Hybrid white OLEDs with fluorophors and phosphors. Mater. Today 17(4), 175–183 (2014)

    Article  Google Scholar 

  118. V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand, Luminescent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133(26), 9960–9963 (2011)

    Article  Google Scholar 

  119. L. Tang, R. Ji, X. Cao et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6), 5102–5110 (2012)

    Article  Google Scholar 

  120. H. Tetsuka, A. Nagoya, R. Asahi, Highly luminescent flexible amino-functionalized graphene quantum dots@cellulose nanofiber–clay hybrids for white-light emitting diodes. J. Mater. Chem. C. 3(15), 3536–3541 (2015)

    Article  Google Scholar 

  121. R. Sekiya, Y. Uemura, H. Murakami, T. Haino, White-light-emitting edge-functionalized graphene quantum dots. Angew. Chem. Int. Ed. Engl. 53(22), 5619–5623 (2014)

    Article  Google Scholar 

  122. C.M. Luk, L.B. Tang, W.F. Zhang, S.F. Yu, K.S. Teng, S.P. Lau, An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. J. Mater. Chem. 22(42), 22378 (2012)

    Article  Google Scholar 

  123. S. Mahesh, C.L. Lekshmi, K.D. Renuka, K. Joseph, Simple and cost-effective synthesis of fluorescent graphene quantum dots from honey: application as stable security ink and white-light emission. Part. Part. Syst. Charact. 33(2), 70–74 (2016)

    Article  Google Scholar 

  124. P. Roy, A.P. Periasamy, C. Chuang et al., Plant leaf-derived graphene quantum dots and applications for white LEDs. New J. Chem. 38(10), 4946–4951 (2014)

    Article  Google Scholar 

  125. T. Ghosh, E. Prasad, White-light emission from unmodified graphene oxide quantum dots. J. Phys. Chem. C. 119(5), 2733–2742 (2015)

    Article  Google Scholar 

  126. J. Kyu Kim, S. Bae, Y. Yi et al., Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes. Sci. Rep. 5, 11032 (2015)

    Google Scholar 

  127. W. Kwon, Y.H. Kim, C.L. Lee et al., Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 14(3), 1306–1311 (2014)

    Article  Google Scholar 

  128. L. Su, X. Zhang, Y. Zhang, A.L. Rogach, Recent progress in quantum dot based white light-emitting devices. Top. Curr. Chem. 374(4), 1–25 (2016)

    Google Scholar 

  129. S.H. Song, M.-H. Jang, J. Chung et al., Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds. Adv. Opt. Mat. 2(11), 1016–1023 (2014)

    Article  Google Scholar 

  130. W. Miao, Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108(7), 2506–2553 (2008)

    Article  Google Scholar 

  131. C.G. Zoski, Handbook of Electrochemistry (Elsevier, 2006)

    Google Scholar 

  132. M. Hakimi, A. Salehi, F.A. Boroumand, Fabrication and characterization of an ammonia gas sensor based on PEDOT-PSS with N-doped graphene quantum dots dopant. IEEE Sens. J. 16(16), 6149–6154 (2016)

    Article  Google Scholar 

  133. R. Sekiya, Y. Uemura, H. Murakami, T. Haino, White-light-emitting edge-functionalized graphene quantum dots. Angew. Chem. Int. Ed. 53(22), 5619–5623 (2014)

    Article  Google Scholar 

  134. D. Pan, L. Guo, J. Zhang et al., Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 22(8), 3314–3318 (2012)

    Article  Google Scholar 

  135. F. Yuan, L. Ding, Y. Li et al., Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7(27), 11727–11733 (2015)

    Article  Google Scholar 

  136. Y. Dong, H. Pang, S. Ren, C. Chen, Y. Chi, T. Yu, Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon 64, 245–251 (2013)

    Article  Google Scholar 

  137. X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 51(13), 2544–2546 (2015)

    Article  Google Scholar 

  138. Z. Fan, Y. Li, X. Li et al., Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70, 149–156 (2014)

    Article  Google Scholar 

  139. H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren, X. Qu, Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-down strategy for long-time cellular imaging. Chem. A Eur. J. 21(9), 3791–3797 (2015)

    Article  Google Scholar 

  140. D. Qu, M. Zheng, L. Zhang et al., Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4 (2014)

    Google Scholar 

  141. C.-B. Ma, Z.-T. Zhu, H.-X. Wang et al., A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale 7(22), 10162–10169 (2015)

    Article  Google Scholar 

  142. J. Ju, W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media. Biosens. Bioelectron. 58, 219–225 (2014)

    Article  Google Scholar 

  143. S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe(3+). Anal. Chem. 86(20), 10201–10207 (2014)

    Article  Google Scholar 

  144. A. Dutta Chowdhury, R. Doong, Highly sensitive and selective detection of nanomolar ferric ions using dopamine functionalized graphene quantum dots. ACS Appl. Mat. Interfaces (2016)

    Google Scholar 

  145. L. Li, L. Li, C. Wang et al., Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim. Acta 182(3–4), 763–770 (2014)

    Google Scholar 

  146. Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem. Eur. J. 20(8), 2254–2263 (2014)

    Article  Google Scholar 

  147. F. Wang, Z. Gu, W. Lei, W. Wang, X. Xia, Q. Hao, Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens. Actuators B: Chem. 190, 516–522 (2014)

    Article  Google Scholar 

  148. Y.X. Qi, M. Zhang, Q.Q. Fu, R. Liu, G.Y. Shi, Highly sensitive and selective fluorescent detection of cerebral lead(II) based on graphene quantum dot conjugates. Chem. Commun. (Camb.) 49(90), 10599–10601 (2013)

    Article  Google Scholar 

  149. B. Wang, S. Zhuo, L. Chen, Y. Zhang, Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochim Acta A Mol. Biomol. Spectrosc. 131, 384–387 (2014)

    Article  Google Scholar 

  150. F. Cai, X. Liu, S. Liu, H. Liu, Y. Huang, A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr(vi) in aqueous media. RSC Adv. 4(94), 52016–52022 (2014)

    Article  Google Scholar 

  151. T. Hallaj, M. Amjadi, J.L. Manzoori, R. Shokri, Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim. Acta 182(3–4), 789–796 (2014)

    Google Scholar 

  152. J.M. Bai, L. Zhang, R.P. Liang, J.D. Qiu, Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chemistry 19(12), 3822–3826 (2013)

    Article  Google Scholar 

  153. S.E.K. Kirschbaum-Harriman, Investigating electrochemiluminescence (ECL) as highly sensitive and effective signaling means for microfluidic biosensors (2016)

    Google Scholar 

  154. S.A. Lim, M.U. Ahmed, Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv. 6(30), 24995–25014 (2016)

    Article  Google Scholar 

  155. M. Mazloum-Ardakani, R. Aghaei, M. Abdollahi-Alibeik, A. Moaddeli, Fabrication of modified glassy carbon electrode using graphene quantum dot, gold nanoparticles and 4-(4-mercaptophenyl)imino)methyl)benzene-1,2-diol by self-assembly method and investigation of their electrocatalytic activities. J. Electroanal. Chem. 738, 113–122 (2015)

    Article  Google Scholar 

  156. N. Shadjou, M. Hasanzadeh, F. Talebi, A.P. Marjani, Integration of beta-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of Vitamin C at physiological pH: a new electrochemical approach. Mater. Sci. Eng. C Mater. Biol. Appl. 67, 666–674 (2016)

    Article  Google Scholar 

  157. J. Xi, C. Xie, Y. Zhang et al., Pd nanoparticles decorated n-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl. Mater. Interfaces. 8(34), 22563–22573 (2016)

    Article  Google Scholar 

  158. Z. Cai, F. Li, P. Wu et al., Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal. Chem. 87(23), 11803–11811 (2015)

    Article  Google Scholar 

  159. S.L. Ting, S.J. Ee, A. Ananthanarayanan, K.C. Leong, P. Chen, Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 172, 7–11 (2015)

    Article  Google Scholar 

  160. J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 87(3), 1903–1910 (2015)

    Article  Google Scholar 

  161. M. Roushani, Z. Abdi, Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sens. Actuators B: Chem. 201, 503–510 (2014)

    Article  Google Scholar 

  162. M.M. Richter, Electrochemiluminescence (ecl). Chem. Rev. 104(6), 3003–3036 (2004)

    Article  Google Scholar 

  163. H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16(11), 433–442 (2013)

    Article  Google Scholar 

  164. A. Zweig, A.K. Hoffmann, D.L. Maricle, A.H. Maurer, The mechanism of electrochemiluminescence. Chem. Commun. (Lon.) 3, 106–108 (1967)

    Article  Google Scholar 

  165. A.J. Bard, Electrogenerated Chemiluminescence (CRC Press, 2004)

    Google Scholar 

  166. A. Bard, J. Debad, J. Leland et al., Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Meyers, RA, Ed, 2000)

    Google Scholar 

  167. R. Xie, Z. Wang, W. Zhou et al., Graphene quantum dots as smart probes for biosensing. Anal. Methods 8(20), 4001–4016 (2016)

    Article  Google Scholar 

  168. H. Zhou, J. Liu, S. Zhang, Quantum dot-based photoelectric conversion for biosensing applications. TrAC Trends Anal. Chem. 67, 56–73 (2015)

    Article  Google Scholar 

  169. Z. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571), 1293–1297 (2002)

    Article  Google Scholar 

  170. J. Lu, M. Yan, L. Ge et al., Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens. Bioelectron. 47, 271–277 (2013)

    Article  Google Scholar 

  171. Y. Dong, W. Tian, S. Ren, R. Dai, Y. Chi, G. Chen, Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl. Mater. Interfaces. 6(3), 1646–1651 (2014)

    Article  Google Scholar 

  172. Y. Yan, Q. Liu, H. Mao, K. Wang, The immobilization of graphene quantum dots by one-step electrodeposition and its application in peroxydisulfate electrochemiluminescence. J. Electroanal. Chem. 775, 1–7 (2016)

    Article  Google Scholar 

  173. J. Liu, X. He, K. Wang et al., A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex-hemin and gold nanoparticles. Biosens. Bioelectron. 70, 54–60 (2015)

    Article  Google Scholar 

  174. R.P. Liang, W.B. Qiu, H.F. Zhao, C.Y. Xiang, J.D. Qiu, Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing. Anal. Chim. Acta 904, 58–64 (2016)

    Article  Google Scholar 

  175. H.F. Zhao, R.P. Liang, J.W. Wang, J.D. Qiu, A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity. Chem. Commun. (Camb.) 51(63), 12669–12672 (2015)

    Article  Google Scholar 

  176. Q. Lu, W. Wei, Z. Zhou, Z. Zhou, Y. Zhang, S. Liu, Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection. Analyst 139(10), 2404–2410 (2014)

    Article  Google Scholar 

  177. T. Zhang, H. Zhao, G. Fan, Y. Li, L. Li, X. Quan, Electrolytic exfoliation synthesis of boron doped graphene quantum dots: a new luminescent material for electrochemiluminescence detection of oncogene microRNA-20a. Electrochim. Acta 190, 1150–1158 (2016)

    Article  Google Scholar 

  178. L. Zhang, L. Li, C. Ma, S. Ge, M. Yan, C. Bian, Detection of α-fetoprotein with an ultrasensitive electrochemiluminescence paper device based on green-luminescent nitrogen-doped graphene quantum dots. Sens. Actuators B: Chem. 221, 799–806 (2015)

    Article  Google Scholar 

  179. S. Chen, X. Chen, T. Xia, Q. Ma, A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosens. Bioelectron. 85, 903–908 (2016)

    Article  Google Scholar 

  180. K.J. Stevenson, D.A.V. Bout, Electrogenerated chemiluminescence with amine and benzoyl peroxide coreactants: reactivity and reaction mechanism studies (2003)

    Google Scholar 

  181. L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015)

    Article  Google Scholar 

  182. S. Basu, Fuel Cell Science and Technology (Springer, 2007)

    Google Scholar 

  183. R. Ramachandran, S.-M. Chen, G.P.G. Kumar, Recent developments in electrode materials for oxygen reduction reaction. Int. J. Electrochem. Sci. 10(10), 8581–8606 (2015)

    Google Scholar 

  184. Y. Zheng, Y. Jiao, M. Jaroniec, Y. Jin, S.Z. Qiao, Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8(23), 3550–3566 (2012)

    Article  Google Scholar 

  185. A. Emadi, M. Ehsani, J.M. Miller, Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles (CRC press, 2003)

    Google Scholar 

  186. N. Kimiaie, K. Wedlich, M. Hehemann et al., Results of a 20000h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system-degradation of the DMFC stack and the energy storage. Energy Environ. Sci. 7(9), 3013–3025 (2014)

    Article  Google Scholar 

  187. X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sour. 172(1), 145–154 (2007)

    Article  Google Scholar 

  188. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)

    Article  Google Scholar 

  189. R. Zhou, M. Jaroniec, S.Z. Qiao, Nitrogen-doped carbon electrocatalysts decorated with transition metals for the oxygen reduction reaction. Chem. Cat. Chem. 7(23), 3808–3817 (2015)

    Google Scholar 

  190. H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 13(39), 17505–17510 (2011)

    Article  Google Scholar 

  191. D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1(14), 2165–2173 (2010)

    Article  Google Scholar 

  192. Y. Yan, Q. Liu, X. Dong et al., Copper(I) oxide nanospheres decorated with graphene quantum dots display improved electrocatalytic activity for enhanced luminol electrochemiluminescence. Microchim. Acta 183(5), 1591–1599 (2016)

    Article  Google Scholar 

  193. Q. Li, S. Zhang, L. Dai, L. Li, Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134(46), 18932–18935 (2012)

    Google Scholar 

  194. H. Jin, H. Huang, Y. He et al., Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 137(24), 7588–7591 (2015)

    Article  Google Scholar 

  195. Y. Liu, W. Li, J. Li, H. Shen, Y. Li, Y. Guo, Graphene aerogel-supported and graphene quantum dots-modified γ-MnOOH nanotubes as a highly efficient electrocatalyst for oxygen reduction reaction. RSC Adv. 6(49), 43116–43126 (2016)

    Article  Google Scholar 

  196. B. Zhang, C. Xiao, Y. Xiang, B. Dong, S. Ding, Y. Tang, Nitrogen-doped graphene quantum dots anchored on thermally reduced graphene oxide as an electrocatalyst for the oxygen reduction reaction. Chem. Electro. Chem. 3(6), 864–870 (2016)

    Google Scholar 

  197. T.F. Yeh, C.Y. Teng, S.J. Chen, H. Teng, Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26(20), 3297–3303 (2014)

    Article  Google Scholar 

  198. L.-C. Chen, T.-F. Yeh, Y.-L. Lee, H. Teng, Incorporating nitrogen-doped graphene oxide dots with graphene oxide sheets for stable and effective hydrogen production through photocatalytic water decomposition. Appl. Catal. A 521, 118–124 (2016)

    Article  Google Scholar 

  199. P. Sudhagar, I. Herraiz-Cardona, H. Park et al., Exploring graphene quantum dots/TiO2 interface in photoelectrochemical reactions: solar to fuel conversion. Electrochim. Acta 187, 249–255 (2016)

    Article  Google Scholar 

  200. Y. Hao, X. Dong, X. Wang, S. Zhai, H. Ma, X. Zhang, Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi2MoO6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation. J. Mater. Chem. A. 4(21), 8298–8307 (2016)

    Article  Google Scholar 

  201. L. Tang, R. Ji, X. Li et al., Deep ultraviolet to near-infrared emission and photoresponse in layered n-doped graphene quantum dots. ACS Nano 8(6), 6312–6320 (2014)

    Article  Google Scholar 

  202. J. Zhao, L. Tang, J. Xiang et al., Chlorine doped graphene quantum dots: preparation, properties, and photovoltaic detectors. Appl. Phys. Lett. 105(11), 111116 (2014)

    Article  Google Scholar 

  203. Z. Zhu, J. Ma, Z. Wang et al., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014)

    Article  Google Scholar 

  204. J.K. Kim, M.J. Park, S.J. Kim et al., Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 7(8), 7207–7212 (2013)

    Article  Google Scholar 

  205. A. Ali Tahir, H. Ullah, P. Sudhagar, M. Asri Mat Teridi, A. Devadoss, S. Sundaram, The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem. Rec. 16(3), 1591–1634 (2016)

    Google Scholar 

  206. Y. Qin, Y. Cheng, L. Jiang et al., Top-down strategy toward versatile graphene quantum dots for organic/inorganic hybrid solar cells. ACS Sustain. Chem. Eng. 3(4), 637–644 (2015)

    Article  Google Scholar 

  207. X. Fang, M. Li, K. Guo et al., Graphene quantum dots optimization of dye-sensitized solar cells. Electrochim. Acta 137, 634–638 (2014)

    Article  Google Scholar 

  208. Y. Zhong, H. Zhang, D. Pan, L. Wang, X. Zhong, Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells. J. Energy Chem. 24(6), 722–728 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hung Chiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yang, JS., Martinez, D.A., Chiang, WH. (2017). Synthesis, Characterization and Applications of Graphene Quantum Dots. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_4

Download citation

Publish with us

Policies and ethics