Skip to main content

Fundamental Mathematical Relations of Solar Drying Systems

  • Chapter
  • First Online:
Book cover Solar Drying Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 1320 Accesses

Abstract

Drying of agricultural products is a widely spread method achieving a physiochemical stabilization of the material by removing part of the moisture content, producing therefore products with new qualitative properties and different nutritional and economical value. Significant amounts of agricultural crops are dried artificially in mechanical drying systems using heated air. Simulation models of the drying process are used either for designing new or improving existing drying systems or for the control of the drying process. All parameters (transfer coefficients, drying constants, etc.) used by the simulation models are directly related to the drying conditions, i.e., temperature and velocity of the drying medium inside the mechanical dryer. As a consequence, the drying conditions, as directly related to the drying time, are affecting the energy demands.

The drying process principles, describing the periods of drying and their modeling (constant and falling-rate periods), are first reported and analyzed, giving the fundamental mathematical relations describing the drying process and the driving forces involved. The concepts of water activity and equilibrium moisture content are therefore introduced, in order to describe the fundamental concept of sorption-desorption isotherms which are the curves that fundamentally determine the way the particular solid can be dehydrated.

In the subsequent chapter, the basic mathematical relations and theories of the drying process involving simultaneous heat and mass transfer models as well as those of the simplified thin-layer and deep-bed models are given.

An overview of solar drying methods (in both thin-layer and deep-bed dryers) along with the principal solar drying systems (direct sun dryers, passive and active dryers) will then be briefly introduced, discussing the respective fields of application and analyzing their advantages and disadvantages. Finally, the basic mathematic equations used for describing and modeling the various physical processes within the most common drying systems and devices are reported. A brief discussion of the recent advances in modeling is finally presented where pertinent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeniyi AA, Mohammed A, Aladeniyi K (2012) Analysis of a solar dryer box with ray tracing CFD technique. Int J Sci Eng Res 3:1–5

    Google Scholar 

  • Akbulut A, Durmus A (2010) Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35:1754–1763

    Article  Google Scholar 

  • Alvarez PI, Legues P (1986) A semi-theoretical model for the drying of Thompson seedless grapes. Dry Technol 4(1):1–17

    Article  Google Scholar 

  • Aregawi W, Defraeye T, Saneinejad S, Vontobel P, Lehmann E, Carmeliet J, Derome D, Verboven P, Nicolai B (2013) Dehydration of apple tissue: intercomparison of neutron tomography with numerical modelling. Int J Heat Mass Transf 67:173–182

    Article  Google Scholar 

  • Azzouz S, Guizani A, Lomaa W, Belgith A (2002) Moisture diffusivity and drying kinetic equation of convective drying of grapes. J Food Eng 55:323–330

    Article  Google Scholar 

  • Babalis S (2006) Theoretical and experimental investigation of the heat and mass transfer phenomena during the drying of foods in hot air stream. PhD thesis, (In Greek) University of Thessaloniki

    Google Scholar 

  • Babalis SJ, Belessiotis VG (2004) Influence of the drying conditions on the drying constants and moisture diffusivity during thin-layer drying of figs. J Food Eng 65(3):449–458

    Article  Google Scholar 

  • Babalis S, Papanikolaou E, Kyriakis N, Belessiotis V (2006) Evaluation of thin-layer drying models for describing drying kinetics of Figs (ficus carica). J Food Eng 75(2):205–214

    Article  Google Scholar 

  • Babbitt JD (1949) Observations on the adsorption of water vapour by wheat. Can J Res Sec F 27:55–72

    Google Scholar 

  • Bakker-Arkema FW, Bickert WG, Patterson RJ (1967) Simultaneous heat and mass transfer during the cooling of a deep bed of biological products under varying inlet air conditions. Agric Eng Res 12:297–307

    Google Scholar 

  • Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sust Energ Rev 14:2298–2314

    Article  Google Scholar 

  • Balaban M, Pigott GM (1988) Mathematical model of simultaneous heat and mass transfer in food with dimensional changes and variable transport parameters. J Food Sci 53(3):935–939

    Article  Google Scholar 

  • Basunia MA, Abe T (2001) Thin-layer solar drying characteristics of rough rice under natural convection. J Food Eng 47:295–301

    Article  Google Scholar 

  • Becker HA, Sallans HR (1955) A study of internal moisture movement in the drying of wheat kernel. Cereal Chem 32:212–226

    Google Scholar 

  • Belghit A, Belahmidi M. et. al. (1997) Étude numérique d’un séchoir solaire fonctionnant en convectionforcée, Revue Général de Thermique 36, No 11, 837–850

    Google Scholar 

  • Belessiotis V, Delyannis E (2006) Drying: methods and systems – principles of drying procedures. [in Greek], Athens

    Google Scholar 

  • Belessiotis VG, Delyannis E (2011) Solar Drying. Sol Energy 85:1665–1691

    Article  Google Scholar 

  • Ben Mabrook S, Belghith A (1995) Numerical simulation of the drying of a deformable material: Evaluation of the diffusion coefficient. Dry Technol 13(8&9):1789–1805

    Article  Google Scholar 

  • Benhamoua A, Fazouane F (2014) Simulation of solar dryer performances with forced convection experimentally proved. Physics Proc 55:96–105

    Article  Google Scholar 

  • Bennamou L, Belhamri A (2003) Design and simulation of a solar dryer for agriculture products. J Food Eng 59:259–266

    Article  Google Scholar 

  • Berger D, Pei DCT (1973) Drying of hygroscopic capillary porous solids – a theoretical approach. Int J Heat Mass Transf 16:293–302

    Article  Google Scholar 

  • Beuchat LR (1981) Microbial stability as affected by water activity. Cereal Foods World 26(7):345–349

    Google Scholar 

  • Bolaji BO, Olalusi AP (2008) Performance evaluation of a mixed-mode solar dryer. AU J T 11:225–231

    Google Scholar 

  • Bruce DM, Sykes RA (1983) Apparatus for determining mass transfer coefficients at high temperatures for exposed paniculate crops with initial results for wheat and hops. JAgric Eng Res 28:385–400

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multicomponent layers. Am Chem Soc J 60:309–319

    Article  Google Scholar 

  • Byler RK, Anderson CR, Brook RC (1987) Statistical methods in thin-layer parboiled rice drying models. Trans ASAE 30(2):533–538

    Article  Google Scholar 

  • Caccavale P, De Bonis MV, Ruocco G (2016) Conjugate heat and mass transfer in drying: a modeling review. J Food Eng 176:28–35

    Article  Google Scholar 

  • Chauhan PS, Kumar A, Tekasakul P (2015) Applications of software in solar drying systems: a review. Renew Sust Energ Rev 51:1326–1337

    Article  Google Scholar 

  • Chen P, Pei DCT (1989) A mathematical model of drying processes. Int J Heat Mass Transf 18(2):297–310

    MATH  Google Scholar 

  • Chen XD, Xie GZ (1997) Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model. Trans I Chem E Part C Food Bioprod Process 75:213–222

    Article  Google Scholar 

  • Chhinnan MS (1984) Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Trans ASAE 84:610–615

    Article  Google Scholar 

  • Chirarattananon S, Chinporncharoenpong C (1998) A steady-state model for the forced convection solar cabinet dryer. Sol Energy 41(4):349–360

    Article  Google Scholar 

  • Chirife J, Inglesias HA (1978) Equations for fitting water sorption isotherms of food. Part I. A review. J Food Technol 13:159–174

    Article  Google Scholar 

  • Cho SH (1975) An exact solution of the coupled phase change problem in a porous medium. Int J Heat Mass Transf 18:1139–1142

    Article  MATH  Google Scholar 

  • Chou SK, Hawlander MNA, Chua KJ (1997) Identification of the receding evaporation front in convective food drying. Dry Technol 15(5):1353–1367

    Article  Google Scholar 

  • Chua KJ, Chou SK (2003) Low cost drying for developing countries. Food Sci Technol 14:519–528

    Article  Google Scholar 

  • Chukwunonye CD, Nnaemeka NR, Chijioke OV, Obiora NC (2016) Thin layer drying modelling for some selected products: a review. Am J Food Sci Nutr Res 3(1):1–15

    Article  Google Scholar 

  • Chung DS, Pfost HB (1967) Adsorption and Desorption of Water Vapor by Cereal Grains and Their Products Part III: A Hypothesis for Explaining the Hysteresis Effect. Transactions of the ASAE 10 (4):0556–0557

    Google Scholar 

  • Colson KH, Young JH (1990) Two-component thin-layer drying model for unshelled peanuts. Trans ASAE 33(1):241–246

    Article  Google Scholar 

  • Condori M, Saravia L (2003) Analytical model for the performance of the tunnel-type greenhouse dryer. Renew Energy 28(3):467–485

    Article  Google Scholar 

  • Cordova-Quiroz AV, Ruiz-Cabrera MA, Garcia-Alvarado MA (1996) Analytical solution of mass transfer equation with interfacial resistance in food drying. Dry Technol 14(7&8):1815–1826

    Article  Google Scholar 

  • Crapiste GH, Whitaker S, Rotstein E (1988a) Drying of cellular material – I. Mass transfer theory. Chem Eng Sci 43(11):2919–2928

    Article  Google Scholar 

  • Crapiste GH, Whitaker S, Rotstein E (1988b) Drying of cellular material – II. Experimental and numerical results. Chem Eng Sci 43(11):2929–2936

    Article  Google Scholar 

  • Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J Food Eng 80:80–95

    Article  Google Scholar 

  • Datta AK (2008) Status of physics-based models in the design of food products, processes, and equipment. Compr Rev Food Sci Food Saf 7:121–129

    Article  Google Scholar 

  • De Vries DA (1987) The theory of heat and moisture transfer in porous media revisited. Int J Heat Mass Transf 30:1343–1350

    Article  Google Scholar 

  • Defraeye T (2014) Advanced computational modelling for drying processes – a review. Appl Energy 131:323–344

    Article  Google Scholar 

  • Defraeye T, Aregawi W, Saneinejad S, Vontobel P, Lehmann E, Carmeliet J, Verboven P, Derome D, Nicolai B (2012) Novel application of neutron radiography to forced convective drying of fruit tissue. Food Bioprocess Technol 6:3353–3367

    Article  Google Scholar 

  • Dev SRS, Raghavan VGS (2012) Advancements in drying techniques for food, fiber, and fuel. Dry Technol 30:1147–1159

    Article  Google Scholar 

  • Dietl C, George OP, Bansal NK (1995) Modeling of diffusion in capillary porous materials during the drying process. Dry Technol 13(1&2):267–293

    Article  Google Scholar 

  • Dincer I, Dost S (1995) An analytical model for moisture diffusion in solid objects during drying. Dry Technol 13(1&2):425–435

    Article  Google Scholar 

  • Doymaz I, Pala M (2002) Hot-air drying characteristics of red pepper. J Food Eng 55:331–335

    Article  Google Scholar 

  • Dutta SK, Nema VK, Bhardwaj RK (1988) Drying behaviour of spherical grains. Int J Heat Mass Transf 31(4):855–861

    Article  Google Scholar 

  • Ekechukwu OV (1999) Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Convers Manag 40:593–613

    Article  Google Scholar 

  • Ekechukwu OV, Norton B (1999a) Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers Manage 40(6):615–655

    Article  Google Scholar 

  • Ekechukwu OV, Norton B (1999b) Review of solar-energy drying systems III: low temperature air-heating solar collectors for crop drying applications. Energy Convers Manag 40(6):657–667

    Article  Google Scholar 

  • El-Sebaii AA, Shalaby SM (2012) Solar drying of agricultural products: a review. Renew Sust Energ Rev 16:37–43

    Article  Google Scholar 

  • Erbay Z, Icier F (2009) A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50:441–464

    Article  Google Scholar 

  • Ertekin CM, Ziya Firat MZ (2015) A comprehensive review of thin layer drying models used in agricultural products. Crit Rev Food Sci Nutr 57:701–717

    Article  Google Scholar 

  • Forson FK, Nazha MA (2007) Design of mixed-mode natural convection solar crop dryers: application of principles and rules of thumb. Renew Energy 32:2306–2319

    Article  Google Scholar 

  • Forson FK, Nazha MA (2008) Modelling and experimental studies on a mixed-mode natural convection solar crop-dryer. Sol Energy 81:346–357

    Article  Google Scholar 

  • Fortes M, Okos MR (1981a) A non-equilibrium thermodynamics approach to transport phenomena in capillary porous media. Trans ASAE 24(3):756–760

    Article  Google Scholar 

  • Fortes M, Okos MR (1981b) Heat and mass transfer in hygroscopic capillary extruded products. AIChE J 27(2):255–262

    Article  Google Scholar 

  • Fortes M, Okos MR (1981c) Non-equilibrium thermodynamics approach to heat and mass transfer in corn cernels. Trans ASAE 24(3):761–769

    Article  Google Scholar 

  • Fudholi A, Sopian K, Ruslan MH, Alghoul MA, Sulaiman MY (2010) Review of solar dryers for agricultural and marine products. Renew Sust Energ Rev 14:1–30

    Article  Google Scholar 

  • Furuta T, Hayakawa K-I (1992) Heat and moisture transfer with thermodynamically interactive fluxes. I Mathematical model development and numerical solution. Trans ASAE 35(5):1537–1546

    Article  Google Scholar 

  • Furuta T, Tsukada T, Hayakawa K-I (1992) Heat and moisture transfer with thermodynamically interactive fluxes and volumetric changes. III. Computer simulation. Trans ASAE 35(5):1553–1557

    Article  Google Scholar 

  • Gallesty E, Paice AD (1996) Mathematical modeling and optimal control of solar dryers. J Math Model Syst 1:27–54

    Google Scholar 

  • Gamson BW, Thodos G, Hougen OA (1943) Heat, mass and momentum transfer in the flow of gases through granular solids. Trans Am Inst Chem Engrs 39:l–25

    Google Scholar 

  • Ghaffari A, Mehdipour R (2015) Modeling and improving the performance of cabinet solar dryer using computational fluid dynamics. Int J Food Eng 11(2):157–172

    Google Scholar 

  • Gibson RD, Cross M, Young RW (1979) Pressure gradients generated during the drying of porous shapes. Int J Heat Mass Transf 22:827–830

    Article  Google Scholar 

  • Halder A, Datta AK, Spanswick RM (2011) Water transport in cellular tissues during thermal processing. AICHE J 57:2574–2588

    Article  Google Scholar 

  • Handley RG (1982) Theoretical treatment of evaporation front drying. Int J Heat Mass Transf 25(10):1511–1522

    Article  MATH  Google Scholar 

  • Hansen RC, Keener HM, ElSohly HN (1993) Thin-layer drying of cultivated Taxus clippings. Trans ASAE 36(5):1387–1391

    Article  Google Scholar 

  • Harmathy TZ (1969) Simultaneous moisture and heat transfer in porous systems with particular reference to drying. Ind Eng Chem Fundam 8(1):92–103

    Article  Google Scholar 

  • Hedayatizadeh M, Chaji H (2016) A review on plum drying. Renew Sustain Energy Rev 56:362–367

    Article  Google Scholar 

  • Henderson SM, Pabis S (1961) Grain drying theory. 1 Temperature effect on drying coefficient. J Agric Eng Res 6:169–174

    Google Scholar 

  • Henry PH (1948) The diffusion of moisture and heat through textiles. Discussions of the Faraday Society 3:243

    Google Scholar 

  • Ho QT, Carmelie J, Datta AK, Defraeye D, Delele MA, Herremans E, Opara L, Ramon H, Tijskens E, van der Sman R, Van Liedekerke P, Verboven P, Nicolaï BM (2013) Multiscale modeling in food engineering. J Food Eng 114:279–291

    Article  Google Scholar 

  • Hukill WV (1954) In: Anderson JA, Alcock AW (eds) Grain dying in storage of cereal grains and their products. American Association of Cereal Chemistry, St. Paul

    Google Scholar 

  • Hughes BR, Oates M (2011) Performance investigation of a passive solar-assisted kiln in the United Kingdom. Sol Energy 85:1488–1498

    Article  Google Scholar 

  • Hustrulid A (1963) Comparative drying rates of naturally moist, re-moistened and frozen wheat. Trans ASAE 6:304–308

    Google Scholar 

  • Jain D (2005) Modelling the performance of greenhouse with packed bed thermal storage on crop drying applications. J Food Eng 71(2):170–178

    Article  Google Scholar 

  • Jain D, Tiwari GN (2003) Thermal aspects of open sun drying of various crops. Energy 28:37–54

    Article  Google Scholar 

  • Jain D, Tiwari GN (2004) Effect of greenhouse on crop drying under natural and forced convection. II. Thermal modeling and experimental validation. Energy Convers Manage 45:2777–2793

    Article  Google Scholar 

  • Jairaj KS, Singh SP, Srikant K (2009) A review of solar dryers developed for grape drying. Sol Energy 83:1698–1712

    Article  Google Scholar 

  • Jamaleddine TJ, Ray MB (2010) Application of computational fluid dynamics for simulation of drying processes: a review. Dry Technol 28:120–154

    Article  Google Scholar 

  • Janjai S, Lamlert N, Intawee P, Mahayothee B, Boonrod Y, Haewsungcharern M, Bala BK, Nagle M, Müller J (2009) Solar drying of peeled longan using a side loading type solar tunnel dryer: experimental and simulated performance. Dry Technol 27:595–605

    Article  Google Scholar 

  • Jaros M, Cenkowski S, Jayas DS, Pabis S (1992) A method of determination of the diffusion coefficient based on kernel moisture content and its temperature. Dry Technol 10(1):213–222

    Article  Google Scholar 

  • Jayas DS, Sokhansanj S (1989) Thin-layer drying of barley at low temperatures. Can Agric Eng 31:21–23

    Google Scholar 

  • Jayas DS, Cenkowski S, Pabis S, Muir WE (1991) Review of the thin-layer drying and wetting equations. Dry Technol 9(3):551–588

    Article  Google Scholar 

  • Karathanos VT, Belessiotis VG (1997) Sun and artificial air-drying kinetics of some agricultural products. J Food Eng 31(1):35–46

    Article  Google Scholar 

  • Karathanos VT, Belessiotis VG (1999) Application of a thin-layer equation to drying data of fresh and semi-dried fruits. J Agric Eng Res 74(4):355–362

    Article  Google Scholar 

  • Katekawa ME, Silva MA (2006) A review of drying models including shrinkage effects. Dry Technol 24:5–20

    Article  Google Scholar 

  • Krawczyk P, Badyda K (2011) Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Arch Thermodyn 32:3–16

    Article  Google Scholar 

  • Kucuk H, Midilli A, Kilic A, Dincer D (2014) A review on thin-layer drying-curve equations. Dry Technol 32:757–773

    Article  Google Scholar 

  • Kumar pandey S, Diwan S, Soni R (2015) Review of mathematical modelling of thin layer drying process. Int J Curr Eng Sci Res 2(11):96–107

    Google Scholar 

  • Kumar A, Blaisdell JL, Herum FL (1982) Generalized analytical model for moisture diffusion in a composite cylindrical body. Trans ASAE 25(3):752–758

    Article  Google Scholar 

  • Kuzmak JM, Sereda PJ (1957a) The mechanism by which water moves through a porous material subjected to a temperature gradient.: I. Introduction of a vapour gap into a saturated system. Soil Sci 84:291–299

    Article  Google Scholar 

  • Kuzmak JM, Sereda PJ (1957b) The mechanism by which water moves through a porous material subjected to a temperature gradient.: II. Salt tracer and streaming potential to detect flow in the liquid phase. Soil Sci 84:419–422

    Article  Google Scholar 

  • Lago ME, Bohm U, Plachco F (1971) Diffusional mass transfer through porous media. Int J Heat Mass Transf 14:813–823

    Article  Google Scholar 

  • Lahsasni S, Kouhila M, Mahrouz M, Jouhari JT (2004) Drying kinetics of prickly pear fruit (Opuntia ficus indica). J Food Eng 61:173–179

    Article  Google Scholar 

  • Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2010) Finite-volume modeling of heat and mass transfer during convective drying of porous bodies – non-conjugate and conjugate formulations involving the aerodynamic effects. Renew Energy 35(7):1391–1402

    Article  Google Scholar 

  • Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2012) Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl Energy 94(2):232–243

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402

    Article  Google Scholar 

  • Lemus-Mondac R, Vega-Galvez A, Moraga NO (2011) Computational simulation and developments applied to food thermal processing. Food Eng Rev 3:121–135

    Article  Google Scholar 

  • Leon MA, Kumar S, Bhattachaya SC (2002) A comprehensive procedure for performance evaluation of solar dryers. Renew Sustain Energy Rev 6:367–393

    Google Scholar 

  • Lewicki PP, Pawlak G (2003) Effect of drying on microstructure of plant tissue. Dry Technol 21:657–683

    Article  Google Scholar 

  • Lewis WK (1921) The rate of drying of solid materials. Ind Eng Chem 13:427–432

    Article  Google Scholar 

  • Liu JY, Cheng S (1991) Solutions of Luikov equations of heat and mass transfer in capillary-porous bodies. Int J Heat Mass Transf 34(7):1747–1753

    Article  Google Scholar 

  • Luikov AV (1961) Application of methods of thermodynamics of irreversible processes to investigation of heat and mass transfer in a boundary layer. Int J Heat Mass Transf 3:167–174

    Article  Google Scholar 

  • Luikov AV (1966) Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int J Heat Mass Transf 9(1):139–152

    Article  Google Scholar 

  • Luikov AV (1975) Systems of differential equations of heat and mass transfer in capillary porous bodies (review). Int J Heat Mass Transf 18:1–14

    Article  MATH  Google Scholar 

  • Luikov AV, Perelman TL, Levdansky VV, Leitsina VG, Pavlyukevich NV (1974) Theoretical investigation of vapour transfer through a capillary – porous body. Int J Heat Mass Transf 17:961–970

    Article  MATH  Google Scholar 

  • Madamba PS, Driscoll RH, Buckle KA (1996) The thin-layer drying characteristics of garlic slices. J Food Eng 29:75–97

    Article  Google Scholar 

  • Mathioulakis E, Karathanos VT, Belessiotis VG (1998) Simulation of air movement in a dryer by computational fluid dynamics: application for the drying of fruits. J Food Eng 36:182–200

    Article  Google Scholar 

  • Mikhailov MD (1973) General solutions of the diffusion equations coupled at boundary conditions. Int J Heat Mass Transf 16:2155–2164

    Google Scholar 

  • Mikhailov MD (1975) Exact solution of temperature and moisture distribution in a porous half-space with moving evaporation front. Int J Heat Mass Transf 18:797–804

    Article  Google Scholar 

  • Mikhailov MD, Shishedjiev BK (1975) Temperature and moisture distributions during contact drying of a moist porous sheet. Int J Heat Mass Transf 18:15–24

    Article  Google Scholar 

  • Misra MK, Brooker DB (1980) Thin-layer drying and rewetting equations for shelled yellow corn. Trans ASAE 23:1254–1260

    Article  Google Scholar 

  • Muhidong J, Chen LH, Smith DB (1992) Thin-layer drying of kenaf. Trans ASAE 35(6):1941–1944

    Article  Google Scholar 

  • Murthy Ramana MV (2009) A review of new technologies, modes and experimental investigations of solar driers. Renew Sust Energ Rev 13:835–844

    Article  Google Scholar 

  • Mustayen AGMB, Mekhilef S, Saidur R (2014) Performance study of different solar dryers: a review. Renew Sust Energ Rev 34:463–470

    Article  Google Scholar 

  • Noomhorm A, Verma LR (1986) Generalized single-layer rice drying models. Trans ASAE 29(2):587–591

    Article  Google Scholar 

  • Norton T, Tiwari B, Sun D-W (2013) Computational fluid dynamics in the design and analysis of thermal processes: a review of recent advances. Crit Rev Food Sci Nutr 53:251–275

    Article  Google Scholar 

  • Ogheneruona D, Yusuf MOL (2011) Design and fabrication of a direct natural convection solar dryer for Tapioka. Leonardo Electron J Pract Technol 18:95–104

    Google Scholar 

  • Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K (2016) Modeling the thin-layer drying of fruits and vegetables: a review. Compr Rev Food Sci Food Saf 15

    Google Scholar 

  • Osnager L (1931a) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426

    Article  Google Scholar 

  • Osnager L (1931b) Reciprocal relations in irreversible processes. II. Phys Rev 38:2265–2279

    Article  MATH  Google Scholar 

  • Oueslati H, Ben Mabrouk S, Mami A (2012) System design, mathematical modelling and simulation of process drying in a solar-gas convective tunnel dryer. Int J Sci Eng Res 3(5):1–8

    Google Scholar 

  • Overhults DG, White HE, Hamilton HE, Ross IJ (1973) Drying soybean with heated air. Trans ASAE 16:112–113

    Article  Google Scholar 

  • Pabis S (1967) Grain drying in thin layers. Paper No. 1lCl4. Presented in Silsoe, England, Symposium 12 Aug 1967

    Google Scholar 

  • Page GE (1949) Factors influencing the maximum rates of air drying shelled corn in thin layers. M. Sc. thesis, Purdue University

    Google Scholar 

  • Pahlavanzadeh H, Basiri A, Zarrabi M (2001) Determination of parameters and pretreatment solution for grape drying. Dry Technol 19(1):217–226

    Article  Google Scholar 

  • Pakowski Z (1991) Evaluation of equations approximating thermodynamic and transport properties of water, steam and air for use in CAD for drying processes. Dry Technol 9(3):753–773

    Article  Google Scholar 

  • Pakowski Z (1999) Simulation of the process of convective drying: identification of generic computation routines and their implementation in a computer code dryPAK. Comput Chem Eng 23(Suppl):S719–S722

    Article  Google Scholar 

  • Panchariya PC, Popovic D, Sharma AL (2002) Thin layer modeling of black tea drying process. J Food Eng 52:349–357

    Article  Google Scholar 

  • Pangavhane DR, Sawhney RL (2002) Review of research and developing work on solar dryers for grape drying. Energy Conversion & Management 43(1):45–61

    Article  Google Scholar 

  • Parry L (1985) Mathematical modelling and computer simulation of heat and mass transfer in agricultural grain drying: a review. J Agric Eng Res 32:1–29

    Article  Google Scholar 

  • Parti M (1990) A theoretical model for thin-layer grain drying. Dry Technol 8(1):101–122

    Article  Google Scholar 

  • Parti M, Dugmanics I (1990) Diffusion coefficient for Corn drying. Trans ASAE 33(5):1652–1656

    Article  Google Scholar 

  • Parti M (1993) Selection of Mathematical Models for Drying Grain in Thin-Layers. Journal of Agricultural Engineering Research 54 (4):339–352

    Google Scholar 

  • Patil R, Gawande R (2016) A review on solar tunnel greenhouse drying system. Renew Sust Energ Rev 56:196–214

    Article  Google Scholar 

  • Paulscn MR, Thompson TL (1973) Drying analysis of grain sorghum. Trans ASAE 16:537–540

    Article  Google Scholar 

  • Pereira da Silva W, Cleide MDPSe S, Gama FJA, Palmeira Gomes J (2014) Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric Sci 13:67–74

    Google Scholar 

  • Perré P (2010) Multiscale modeling of drying as a powerful extension of the macroscopic approach: application to solid wood and biomass processing. Dry Technol 28:944–959

    Article  Google Scholar 

  • Perré P, Rémond R, Colin J, Mougel E, Almeida G (2012) Energy consumption in the convective drying of timber analyzed by a multiscale computational model. Dry Technol 30:1136–1146

    Article  Google Scholar 

  • Phadke PC, Walke PV, Kriplani VM (2015) A review on indirect solar dryers. ARPN J Eng Appl Sci 10(8):3360–3371

    Google Scholar 

  • Philip JR (1957a) The theory of infiltration: I. The infiltration equation and its solution. Soil Sci 83:345–347

    Article  Google Scholar 

  • Philip JR (1957b) The theory of infiltration: I. The profile of infinity. Soil Sci 83:435–448

    Article  Google Scholar 

  • Prakash O, Kumar A (2013) Historical review and recent trends in solar drying systems. Int J of Green Energy 10(7):690–738

    Article  Google Scholar 

  • Prakash O, Laguri V, Pandey A, Kumar A, Kumar A (2016) Review on various modelling techniques for the solar dryers. Renew Sust Energ Rev 62:396–417

    Article  Google Scholar 

  • Raj PPK, Emmons HW (1975) Transpiration drying of porous hygroscopic materials. Int J Heat Mass Transf 18:635–648

    Article  MATH  Google Scholar 

  • Rapusas RS, Driscoll RH (1995) The thin layer drying characteristics of white onion slices. Dry Technol 13(8&9):1905–1931

    Article  Google Scholar 

  • Ratti C, Crapiste GH (1992). A generalized drying curve for shrinking food materials. Paper presented at IDS’92, Montreal, 2–5 August 1992

    Google Scholar 

  • Reyes A, Mahn A, Vásquez F (2014) Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers Manag 83:241–248

    Article  Google Scholar 

  • Ribeiro JW, Cotta RM, Mikhailov MD (1993) Integral transform solution of Luikov’s equations for heat and mass transfer in capillary porous media. Int J Heat Mass Transf 36(18):4467–4475

    Article  MATH  Google Scholar 

  • Roa G, Fioreze R, Rossi, JS, Villa LG (1977) Dynamic estimation of thin-layer drying parameters. ASAE Paper 77-3530

    Google Scholar 

  • Rossen JL, Hayakawa K (1977) Simultaneous heat and moisture transfer in dehydrated food. A review of theoretical models. AIChE Symp Ser 73(163):71–81

    Google Scholar 

  • Sablani S (2008) Status of observational models in design and control of food processes. Compr Rev Food Sci Food Saf 7:130–136

    Article  Google Scholar 

  • Sakai N, Hayakawa K-I (1992) Two dimensional simultaneous heat and moisture transfer in composite food. J Food Sci 57(2):475–480

    Article  Google Scholar 

  • Sami S, Etesami N, Rahimi A (2011a) Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modelling results. Int J Energy 36:2847–2855

    Article  Google Scholar 

  • Sami S, Rahimi A, Etesami N (2011b) Dynamic modeling and a parametric study of an indirect solar cabinet dryer. Dry Technol 29:825–835

    Article  Google Scholar 

  • Sander A (2007) Thin-layer drying of porous materials: selection of the appropriate mathematical model and relationships between thin-layer models parameters. Chem Eng Process 46:1324–1331

    Article  Google Scholar 

  • Saravakos GD, Charm SE (1962) A study of the mechanism of fruit and vegetable dehydration. Food Technol 26(1):78–81

    Google Scholar 

  • Sawhney RL, Pangavhane DR, Sarsavadia PN (1999a) Drying kinetics of single layer Thompson seedless grapes under heated ambient air conditions. Dry Technol 17(1&2):215–236

    Article  Google Scholar 

  • Sawhney RL, Sarsavadia PN, Pangavhane DR, Singh SP (1999b) Determination of drying constants and their dependence on drying air parameters for the thin layer onion drying. Dry Technol 17(1&2):299–315

    Article  Google Scholar 

  • Schadler N, Kast W (1987) A complete model of the drying curve for porous bodies – experimental and theoretical studies. Int J Heat Mass Transf 30:2031–2044

    Article  Google Scholar 

  • Sereno AM, Medeiros GL (1990) A simplified model for the prediction of drying rates for foods. J Food Eng 12:1–11

    Article  Google Scholar 

  • Sharaf-Eldeen YI, Hamdy MY, Blaisdell JL (1979) Falling rate drying of fully exposed biological materials: a review of mathematical models. ASAE Paper No. 79-6622. Winter Meeting of ASAE

    Google Scholar 

  • Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY (1980) A model for ear corn drying. Trans ASAE 23:1261–1265

    Article  Google Scholar 

  • Sharma A, Chen CR, Lan NV (2009) Solar-energy drying systems: a review. Renew Sust Energ Rev 13:1185–1210

    Article  Google Scholar 

  • Shokouhmand H, Abdollahi V, Hosseini S, Vahidkhah K (2011) Performance optimization of a brick dryer using porous simulation approach. Dry Technol 29:360–370

    Article  Google Scholar 

  • Shusheng P, Langrish TAG, Keey RB (1993) The heat of sorption of timber. Dry Technol 11(5):1071–1080

    Article  Google Scholar 

  • Simal S, Mulet A, Catala PJ et al (1996) Moving Boundary model for simulating moisture movement in grapes. J Food Sci 61:157–160

    Article  Google Scholar 

  • Singh PL (2011) Silk cocoon drying in forced convection type solar dryer. Appl Energy 88:1720–1726

    Article  Google Scholar 

  • Singh PC, Singh RK (1996) Application of GAB model for water sorption isotherms of food products. J Food Process Preserv 20:203–220

    Article  Google Scholar 

  • Singh RK, Lund DB, Buelow FH (1983a) Application of solar energy in food processing. II Food dehydration. Trans ASAE 26(5):1569–1574

    Article  Google Scholar 

  • Singh RK, Lund DB, Buelow FH (1983b) Application of solar energy in food processing. III Economic performance evaluation. Trans ASAE 26(5):1575–1579

    Article  Google Scholar 

  • Sokhansanj S, Bruce DM (1987) A conduction model to predict grain drying temperatures in grain drying simulation. Trans ASAE 30(4):1181–1184

    Article  Google Scholar 

  • Sontakke MS, Salve SP (2015) Solar drying technologies: a review. Int Referee J Eng Sci (IRJES) 4(4):29–35

    Google Scholar 

  • Spencer HB (1969) A mathematical simulation of grain drying. Journal of Agricultural Engineering Research 14 (3):226–235

    Google Scholar 

  • Sreekumar A, Manikantan PE, Vijayakumar KP (2008) Performance of indirect solar cabinet dryer. Energy Convers Manag 49(1):388–395

    Google Scholar 

  • Srikiatden J, Roberts JS (2007) Moisture transfer in solid food materials: a review of mechanisms, models, and measurements. Int J Food Prop 10(4):739–777

    Article  Google Scholar 

  • Sun LM, Meunier F (1987) A detailed model for nonisothermal sorption in porous absorbents. Chemical Engineering Science 42(7), 1585–1593.

    Google Scholar 

  • Sun D-W, Woods JL (1994) Low temperature moisture transfer characteristics of wheat in thin-layers. Trans ASAE 37(6):1919–1926

    Article  Google Scholar 

  • Thompson TL, Peart RM, Foster GH (1968) Mathematical simulation of corn drying – a new model. Trans ASAE 11:582–586

    Article  Google Scholar 

  • Troeger JM, Hukill WV (1971) Mathematical description of the drying rate of fully exposed corn. Trans ASAE 14:1153–1156, 1162.

    Google Scholar 

  • Toei R (1996) Theoretical fundamentals of drying operation. Dry Technol 14(1):1–194

    Article  Google Scholar 

  • Togrul IT, Pehlivan D (2004) Modelling of thin-layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65(3):413–425

    Article  Google Scholar 

  • Torres-Reyes E, Cervantes-de Gortari JG, Ibarra-Salazar BA, Picon-Nuρez MA (2001) Design method of flat-plate solar collectors based on minimum entropy generation. Energy Int J 1(1):46–52

    Google Scholar 

  • Torres-Reyes E, Navarrete-Gonzalez JJ, Ibarra-Salazar BA (2002) Thermodynamic method for designing dryers operated by flat-plate solar collectors. Renew Energy 26:649–660

    Article  Google Scholar 

  • Toshniwal U, Karale SR (2013) A review paper on Solar Dryer. Int J Eng Res Appl (IJERA) 3(2):896–902

    Google Scholar 

  • Tripathi G, Shukla KN, Pandey RN (1977) Intensive Drying of an Infinite Plate. Int J Heat Mass Transf 20:451–458

    Article  MATH  Google Scholar 

  • Tulasidas TN, Raghavan GSV, Norris ER (1993) Microwave and convective drying of grapes. Trans ASAE 36(6):1861–1865

    Article  Google Scholar 

  • Vaccarezza LM, Chirife J (1975) On the mechanism of moisture transport during air drying of sugar beet root. J Food Sci 40:1286–1289

    Article  Google Scholar 

  • Vaccarezza LM, Chirife J (1978) On the application of Fick’s law for the kinetic analysis of air drying of foods. J Food Sci 43:236–238

    Article  Google Scholar 

  • Vagenas GK (1988) Application of heat and mass transfer in air-drying of foods. PhD thesis (in Greek), National Technical University of Athens

    Google Scholar 

  • Vagenas GK, Marinos-Kouris D, Saravakos GD (1990) An analysis of mass transfer in air-drying of foods. Dry Technol 8(2):323–342

    Article  Google Scholar 

  • Van der Zanden AJJ, Coumans WJ, Kerkhof PJAM, Schoenmakers AME (1996) Isothermal moisture transport in partially saturated porous media. Dry Technol 14(7&8):1525–1542

    Article  Google Scholar 

  • Vazquez G, Chenlo F, Moreira R, Costoyas A (1999) The dehydration of garlic. 1. Desorption isotherms and modelling of drying kinetics. Dry Technol 17(6):1095–1108

    Article  Google Scholar 

  • Vijaya Venkata Ramana S, Iniyanb S, Goicc R (2012) A review of solar drying technologies. Renew Sust Energ Rev 16:2652–2670

    Article  Google Scholar 

  • Waananen KM, Litchfield JB, Okos MR (1993) Classification of drying models for porous solids. Dry Technol 11(1):1–40

    Article  Google Scholar 

  • Walton LR, Casada ME (1986) A new diffusion model for drying burley tobacco. Trans ASAE 29(1):271–275

    Article  Google Scholar 

  • Walton LR, White GM, Ross IJ (1988) A cellular diffusion-based drying model for corn. Trans ASAE 31(1):279–283

    Article  Google Scholar 

  • Wan J, Langrish TAG (1995) A numerical simulation for solving the diffusion equation in the drying of hardwood timber. Dry Technol 13(3):783–799

    Article  Google Scholar 

  • Wang N, Brennan JG (1995) A mathematical model of simultaneous transfer during drying of potato. J Food Eng 24:47–60

    Article  Google Scholar 

  • Wang CN, Singh RP (1978) A single layer drying equation for rough rice. ASAE Paper 78-3001

    Google Scholar 

  • White GM, Bridges TC, Loewer OJ, Ross IJ (1981) Thin-layer drying model for soybeans. Trans ASAE 24:1643–1646

    Article  Google Scholar 

  • Willits DH, Ross IJ, White GM, Hamilton HE (1976) A mathematical drying model for porous materials: Part I – theory. Trans ASAE 19:556–561

    Article  Google Scholar 

  • Xia B, Sun D-W (2002) Application of Computational Fluid Dynamics (CFD) in the food industry: a review. Comput Electron Agric 34:5–24

    Article  Google Scholar 

  • Yaldiz O, Ertekin C, Uzun HB (2001) Mathematical modelling of thin-layer solar drying of sultana grapes. Energy 26:457–465

    Article  Google Scholar 

  • Yu W-P, Wang B-X, Shi M-H (1993) Modeling of heat and mass transfer in unsaturated wet porous media with consideration of capillary hysteresis. Int J Heat Mass Transf 36:3671–3676

    Article  MATH  Google Scholar 

  • Zomorodian A, Moradi M (2010) Mathematical modeling of forced convection thin layer solar drying for Cuminum cyminum. Int J Agr Sci Tech 12:401–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Belessiotis .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

aw

Water activity

a, b, c, n

Constants

A

Area

m2

Ap

Area of a drying product

m2

Bi m

Biot number for mass

Bi h

Biot number for heat

c p,p

Specific thermal capacity of a product

kJ ⋅ kg−1 ⋅ K−1

c p,a

Specific thermal capacity of air

kJ ⋅ kg−1 ⋅ K−1

C, c o, K, k o

Constants in GAB equation

D

Moisture diffusion coefficient

m2 ⋅ s−1

D o

Constant in the Arrhenius equation for diffusion

D eff

Effective value of diffusivity

m2⋅ s−1

D eff,ref

Reference value for effective diffusivity

m2⋅ s−1

DR

Drying rate

kg ⋅ kg−1 dry mater ⋅ s−1

Fo

Nondimensional Fourier number

h g

Heat transfer coefficient

W ⋅ m−2 ⋅ °C−1

hfg

Latent heat of evaporation of water

kJ ⋅ kg−1

J m

Mass flow

kg⋅ m−2⋅ s−1

j h

Chilton-Colburn coefficient for heat

j m

Chilton-Colburn coefficient for mass

k g

Mass transfer coefficients

kg ⋅ m−2 ⋅ s−1

k, k o , k 1

Constants

Κ v

Vapor diffusion coefficient

m2 ⋅ s−1

K

Drying constant

h−1

L

Characteristic length

m

m

Mass

kg

m p

Mass of product

kg

m d

Mass of dry material

kg

M

Moisture content, wet basis

kg H2O ⋅ kg−1 prod.

Mo

Initial moisture content, wet basis

kg H2O ⋅ kg−1 prod.

M eq

Equilibrium moisture content, wet basis

kg H2O ⋅ kg−1 prod.

MR

Moisture ratio

M v

Vapor molecular weight

kg

M g

Drying air molecular weight

kg

Nu

Nusselt number

Pr

Prandtl number

P v

Vapor pressure

Pa

P v,sat

Saturated vapor pressure

Pa

P t

Total pressure of vapor

Pa

P w

Pressure of vapor over water

Pa

q

Heat flow

W ⋅ m−2

Re

Reynolds number

R

Σταθερά αερίων

8.3143 J ⋅ mol−1⋅ K−1

t

Time

h

T, θ

Temperature

oC

T abs

Absolute air temperature

K

T air

Air temperature

oC

T p

Product temperature

oC

T wb

Wet-bulb temperature

oC

Υ

Moisture content of air

kg H2O ⋅ kg−1 dry air

V

Volume

m3

V b

Apparent volume

m3

V ref

Reference volume

m3

vair

Velocity

m ⋅ s−1

W

Weight

kg

W o

Initial weight

kg

W d

Weight of dry matter

kg

Χ

Moisture content, dry basis

kg H2O ⋅ kg−1 dry matter

Χο

Initial moisture content, dry basis

kg H2O ⋅ kg−1 dry matter

Χeq

Equilibrium moisture content, dry basis

kg H2O ⋅ kg−1 dry matter

Χ cr

Moisture content at critical point

kg H2O ⋅ kg−1 dry matter

Χ s

Moisture content, dB, at the surface

kg H2O ⋅ kg−1 dry matter

1.1 Greek Symbols

α

Air or thermal diffusivity of a fluid

m2 ⋅ s−1

ε

Porosity of a solid

λ

Thermal conductivity

W ⋅ m −1oC−1

μ

Dynamic viscosity

kg ⋅ m −1 ⋅ s−1

ν

Kinematic viscosity

m2 ⋅ s−1

ρ

Density

kg ⋅ m−3

φ

Relative humidity

%

Φ

Drying parameter

1.2 Indices

air

Air

b

Bulk

cr

Critical

d

Dry matter

eff

Effective value

eq

Equilibrium value

h

Heat

in

Initial value

l

Liquid

m

Mass

ο

Initial value

p

Product

ref

Reference value

sat

Saturated value

v ή vap

Vapor

w

Water

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Babalis, S., Papanicolaou, E., Belessiotis, V. (2017). Fundamental Mathematical Relations of Solar Drying Systems. In: Prakash, O., Kumar, A. (eds) Solar Drying Technology. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3833-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3833-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3832-7

  • Online ISBN: 978-981-10-3833-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics