Skip to main content

Pyrolysis Characteristics of Basic Components

  • Chapter
  • First Online:
Combustible Solid Waste Thermochemical Conversion

Part of the book series: Springer Theses ((Springer Theses))

  • 451 Accesses

Abstract

For the nine combustible solid waste (CSW) basic components proposed in Chap. 2, pyrolytic experiments in thermogravimetric analyzer (TGA), Macro-TGA, and horizontal fixed bed reactor (HFBR) were performed. Kinetics were fundamental characteristics of pyrolytic reactions. The slow pyrolytic kinetics of intrinsic chemical reactions were studied in TGA, and the fast and slow pyrolytic kinetics with heat and mass transfer effect were studied in Macro-TGA, which was more similar to industrial fixed bed reactor. Finally, the kinetics from different conditions were compared. In addition, the product (gas, liquid, and solid) distribution was studied in horizontal fixed bed reactor. The gas products from TGA pyrolysis were analyzed by Fourier transform infrared spectroscopy (FTIR), and the gas products from horizontal fixed bed reactor were analyzed by gas chromatography (GC). Polycyclic aromatic hydrocarbons (PAHs) are important pollutants during thermochemical conversions of CSW. Therefore, the PAHs formation characteristics were quantitatively studied in the horizontal fixed bed reactor. Based on the above results, the pyrolytic mechanisms and the PAHs formation mechanisms were further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banyasz JL, Li S, Lyons-Hart J et al (2001) Gas evolution and the mechanism of cellulose pyrolysis. Fuel 80:1757–1763

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier Ltd, Oxford

    Google Scholar 

  • Chen T, Wu J, Zhang J et al (2014) Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Bioresource Technol 153:223–229

    Article  CAS  Google Scholar 

  • Chung S, Violi A (2011) Peri-condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons. P Combust Inst 33:693–700

    Article  CAS  Google Scholar 

  • Cypres R (1987) Aromatic hydrocarbons formation during coal pyrolysis. Fuel Process Technol 15:1–15

    Article  CAS  Google Scholar 

  • Depeyre D, Flicoteaux C, Chardaire C (1985) Pure n-hexadecane thermal steam cracking. Ind Eng Chem Process Design Dev 24:1251–1258

    Article  CAS  Google Scholar 

  • Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Encinar JM, González JF (2008) Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process Technol 89:678–686

    Article  CAS  Google Scholar 

  • Fairburn JA, Behie LA, Svrcek WY (1990) Ultrapyrolysis of n-hexadecane in a novel micro-reactor. Fuel 69:1537–1545

    Article  CAS  Google Scholar 

  • Ferdous D, Dalai AK, Bej SK et al (2002) Pyrolysis of lignins: experimental and kinetics studies. Energ Fuel 16:1405–1412

    Article  CAS  Google Scholar 

  • Ferry JG (1992) Methane from acetate. J Bacteriol 174:5489–5495

    Article  CAS  Google Scholar 

  • Greenwood PF, van Heemst JDH, Guthrie EA et al (2002) Laser micropyrolysis GC–MS of lignin. J Anal Appl Pyrol 62:365–373

    Article  CAS  Google Scholar 

  • Hansson K, Samuelsson J, Tullin C et al (2004) Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame 137:265–277

    Article  CAS  Google Scholar 

  • Iida T, Nakanishi M, Got OK (1974) Investigations on poly (vinyl chloride). I. Evolution of aromatics on pyrolysis of poly (vinyl chloride) and its mechanism. J Polym Sci Polym Chem E 12:737–749

    Article  CAS  Google Scholar 

  • Kim DH, Mulholland JA, Wang D et al (2010) Pyrolytic hydrocarbon growth from cyclopentadiene. J Phys Chem A 114:12411–12416

    Article  CAS  Google Scholar 

  • Kim S (2001) Pyrolysis kinetics of waste PVC pipe. Waste Manage 21:609–616

    Article  CAS  Google Scholar 

  • Kislov VV, Sadovnikov AI, Mebel AM (2013) Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J Phys Chem A 117:4794–4816

    Article  CAS  Google Scholar 

  • Liu Q, Wang SR, Zheng Y et al (2008) Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrol 82:170–177

    Article  CAS  Google Scholar 

  • Liu Q, Zhong ZP, Wang SR et al (2011) Interactions of biomass components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrol 90:213–218

    Article  CAS  Google Scholar 

  • Lu M, Mulholland JA (2004) PAH Growth from the pyrolysis of CPD, indene and naphthalene mixture. Chemosphere 55:605–610

    Article  CAS  Google Scholar 

  • Luo Z, Wang S, Liao Y et al (2004) Mechanism study of cellulose rapid pyrolysis. Ind Eng Chem Res 43:5605–5610

    Article  CAS  Google Scholar 

  • Marsh ND, Wornat MJ (2000) Formation pathways of ethynyl-substituted and cyclopenta-fused polycyclic aromatic hydrocarbons. P Combust Inst 28:2585–2592

    Article  CAS  Google Scholar 

  • Mastral AM, Callén MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34:3051–3057

    Article  CAS  Google Scholar 

  • Masuda Y, Uda T, Terakado O et al (2006) Pyrolysis study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides. J Anal Appl Pyrol 77:159–168

    Article  CAS  Google Scholar 

  • McGrath T, Sharma R, Hajaligol M (2001) An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel 80:1787–1797

    Article  CAS  Google Scholar 

  • Meng A, Zhou H, Qin L et al (2013) Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J Anal Appl Pyrol 104:28–37

    Article  CAS  Google Scholar 

  • Richter H, Howard J (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energ Combust 26:565–608

    Article  CAS  Google Scholar 

  • Scott DS, Czernik SR, Piskorz J et al (1990) Fast pyrolysis of plastic wastes. Energ Fuel 4:407–411

    Article  CAS  Google Scholar 

  • Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohyd Res 29:113–122

    Article  CAS  Google Scholar 

  • Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technol 100:6496–6504

    Article  CAS  Google Scholar 

  • Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J Anal Appl Pyrol 87:199–206

    Article  CAS  Google Scholar 

  • Shukla B, Koshi M (2012) A novel route for PAH growth in HACA based mechanisms. Combust Flame 159:3589–3596

    Article  CAS  Google Scholar 

  • Siengchum T, Isenberg M, Chuang S (2013) Fast pyrolysis of coconut biomass—an FTIR study. Fuel 105:559–565

    Article  CAS  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF et al (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrol 105:143–150

    Article  CAS  Google Scholar 

  • Varhegyi G, Antal MJ, Sezekely T et al (1989) Kinetics of the thermal-decomposition of cellulose, hemicellulose, and sugar-cane bagasse. Energ Fuel 3:329–335

    Article  CAS  Google Scholar 

  • Wang C, Dou B, Song Y et al (2014) Kinetic study on nonisothermal pyrolysis of sucrose biomass. Energ Fuel 28:3793–3801

    Article  CAS  Google Scholar 

  • Wang D, Violi A (2006) Radical—molecule reactions for aromatic growth: a case study for cyclopentadienyl and acenaphthylene. J Org Chem 71:8365–8371

    Article  CAS  Google Scholar 

  • Williams P, Horne PA (1995) Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. J Anal Appl Pyrol 31:15–37

    Article  CAS  Google Scholar 

  • Williams PT, Williams EA (1999) Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. J Anal Appl Pyrol 51:107–126

    Article  CAS  Google Scholar 

  • Wu C, Budarin VL, Gronnow MJ et al (2014) Conventional and microwave-assisted pyrolysis of biomass under different heating rates. J Anal Appl Pyrol 107:276–283

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yu H, Zhang Z, Li Z et al (2014) Characteristics of tar formation during cellulose, hemicellulose and lignin gasification. Fuel 118:250–256

    Article  CAS  Google Scholar 

  • Zhang J, Chen T, Wu J et al (2014) A novel Gaussian-DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin. RSC Adv 4:17513–17520

    Article  CAS  Google Scholar 

  • Zheng J, Jin YQ, Chi Y et al (2009) Pyrolysis characteristics of organic components of municipal solid waste at high heating rates. Waste Manage 29:1089–1094

    Article  CAS  Google Scholar 

  • Zhou H, Wu C, Onwudili JA et al (2015) Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Manage 36:136–146

    Article  Google Scholar 

  • Zhu HM, Jiang XG, Yan JH et al (2008) TG-FTIR analysis of PVC thermal degradation and HCl removal. J Anal Appl Pyrol 82:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, H. (2017). Pyrolysis Characteristics of Basic Components. In: Combustible Solid Waste Thermochemical Conversion. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3827-3_3

Download citation

Publish with us

Policies and ethics