Advertisement

A Survey on Computation Offloading Techniques in Mobile Cloud Computing and Their Parametric Comparison

  • Sumandeep KaurEmail author
  • Kamaljit Kaur
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 8)

Abstract

Mobile Cloud Computing (MCC) is a distributed computing model which outspreads the idea of utility computing of the Cloud Computing to the Smart Mobile Devices (SMDs). Outsourcing intensive applications of the SMDs to the remote servers is the key idea of Mobile Cloud Computing. Many techniques have been developed for offloading computation intensive application code on the cloud servers for execution for saving scarce resources of the mobile devices such as battery life, network bandwidth, device’s storage memory, processing unit’s performance etc. This paper presents review on techniques for computational offloading. Computation offloading is relocating some computation concentrated part of an application code to a cloud server for execution to fulfil the source requirements. A comparative study on the techniques for computational offloading has been shown on the basis of parameters such as bandwidth, network latency, cost, energy consumption, execution time etc.

Keywords

Cloud computing Mobile cloud computing Computation offloading Application partitioning Application deployment Network-aware computation offloading 

References

  1. 1.
    Fernando, N., Loke, S.W., Rahayu, W.: Mobile Computing: A survey. In: Future Generation Computer Systems 29 (2013), doi: 10.1016/j.future.2012.05.023, pp. 84–106. Elsevier (2013).
  2. 2.
    Kosta, S., Aucinas, A., hui, P., Mortier, R., Zhang, X.: ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: IEEE INFOCOM, pp. 945–953. IEEE (2012).Google Scholar
  3. 3.
    Folino, G., Pisani, F.S.: Automatic offloading of mobile applications into the cloud by means of genetic programming. In: Applied Soft Computing 25 (2014), pp. 253–265. Elsevier (2014).Google Scholar
  4. 4.
    Magurwalage, C.M.S., Yang, K., Hu L., Zhang J.: Energy-efficient and network-aware offloading algorithm for mobile cloud computing. In: Journal of Computer Networks 74 (2014), Elsevier, pp. 22–33. Elsevier (2014).Google Scholar
  5. 5.
    Komnios, I., Tsapeli, F., Gorinsky, S.: Cost-Effective Multi-Mode Offloading with peer-assisted communications. In: Ad Hoc Networks 25 (2015), doi: 10.1016/j.adhoc.2014.07.028, pp. 370–382. Elsevier (2015).
  6. 6.
    Mukherjee, A., De, D.: Low power offloading strategy for femto-cloud mobile network. In: Engineering Science and Technology, an International Journal, doi: 10.1016/j.jestch.2015.08.001, pp. 1–11. Elsevier (2015).
  7. 7.
    Rehman Khan, A.R., Othman, M., Khan, A.N., Abid, S.A, Madani, S.A.: MobiByte: An Application Development Model for Mobile Cloud Computing. In: J Grid Computing (2015) 13, pp. 605–628. Springer (2015).Google Scholar
  8. 8.
    Yang, L., Cao, J., Tang S., Li, T., Chan, A.T.S.: A Framework for Partitioning and Execution of Data Stream Applications in Mobile Cloud Computing. In: IEEE Fifth International Conference on Cloud Computing, pp. 794–802. IEEE (2012).Google Scholar
  9. 9.
    March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M., Lee, B.S: µCloud: Towards a New Paradigm of Rich Mobile Applications. In: 8th Conference on Mobile Web Information Systems (MobiWIS), pp. 618–624. ScienceDirect (2011).Google Scholar
  10. 10.
    Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., Qureshi, A.: Application partitioning algorithm in mobile cloud computing: Taxonomy, review and future direction. In: Journal of Network and Computer Applications 48 (2015), doi: 10.1016/j.jnca.2014.09.009, pp. 99–117. Elsevier (2015).
  11. 11.
    Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile device and cloud. In: 6th Conference on Computer Systems, EuroSys ‘11, pp. 301–314. ACM (2011).Google Scholar
  12. 12.
    AbdElminaam, D.S., Kader, H.M.A., Hadhoud, M.M., El-Sayed, S.M.: Elastic Framework for Augmenting the Performance of Mobile Applications using Cloud Computing. In: Proceedings of IEEE, pp. 134–141. IEEE (2013).Google Scholar
  13. 13.
    Verbelen, T., Stevens, T., Turk, F.D., Dhoedt, B.: Graph partitioning algorithms for optimizing software deployment in mobile cloud computing. In: Future Generation Computer Systems 29 (2013), doi: 10.1016/j.future.2012.07.003, pp. 451–459. Elsevier (2013).
  14. 14.
    Shiraz, M., Gani, A., Shamim, A., Khan, S., Ahmad, R.W.: Energy Efficient Computational Offloading, Framework for Mobile Cloud Computing. In: J Grid Computing (2015) 13, doi: 10.1007/s10723-014-9323-6, pp. 1–18. Springer (2015).
  15. 15.
    Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems under different operating conditions. In: IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 8, pp. 1374–1381. IEEE (2011).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Computer Engineering and TechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations