Advertisement

Time-Efficient Discovery of Moving Object Groups from Trajectory Data

  • Anand NautiyalEmail author
  • Rajendra Prasad Lal
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 8)

Abstract

The advent of numerous mobile devices and location acquiring technologies like GPS give rise to a massive amount of spatio-temporal data. These devices leave the traces of their positions in the form of a trajectory, which imparts valuable information regarding an object’s mobility, as it moves with time. The identification of object groups has copious applications in various domains, like transport system, event prediction, scientific studies, etc. All the state-of-the-art algorithms for discovering object groups use DBSCAN Lo et al. (Kdd 96:226–231, 1996) [1] for clustering spatio-temporal data. However, the time cost for DBSCAN is \(O(n^{2})\) which can be futile for streaming data. Our work lies in improving the time complexity of the buddy-based traveling companion (a certain type of moving object group) discovery algorithm Tang et al. (ICDE, 2012) [2], Tang et al. (ACM Transactions on Intelligent Systems and Technology (TIST) 5(1):3, 2003) [3] by incorporating the grid based clustering algorithm Gunawan (PhD thesis, Masters thesis, Technische University Eindhoven, 2013) [4], which takes O(nlogn) time. We also establish a novel concept of varying density with increasing snapshots.

Keywords

DBSCAN Clustering Grid clustering Trajectory Buddy Traveling companion 

References

  1. 1.
    M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231, 1996.Google Scholar
  2. 2.
    N. J. Y. J. H. A. L. C.-C. H. W.-C. P. Lu-An Tang, Yu Zheng. On discovery of traveling companions from streaming trajectories. ICDE 2012, April 2012.Google Scholar
  3. 3.
    L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, W.-C. Peng, and T. L. Porta. A framework of traveling companion discovery on trajectory data streams. ACM Transactions on Intelligent Systems and Technology (TIST), 5(1):3, 2013.Google Scholar
  4. 4.
    A. Gunawan. A faster algorithm for DBSCAN. PhD thesis, Masters thesis, Technische University Eindhoven, 2013.Google Scholar
  5. 5.
    M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting flock patterns. Computational Geometry, 41(3):111–125, 2008.Google Scholar
  6. 6.
    H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 1(1):1068–1080, 2008.Google Scholar
  7. 7.
    Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. Proceedings of the VLDB Endowment, 3(1–2):723–734, 2010.Google Scholar
  8. 8.
    N. J. Y. S. S. Kai Zheng, Yu Zheng. On discovery of gathering patterns from trajectories. ICDE 2013, April 2013.Google Scholar
  9. 9.
    C. Z. W. X. X. X. G. S. Y. H. Jing Yuan, Yu Zheng. T-drive: Driving directions based on taxi trajectories. ACM SIGSPATIAL GIS 2010, November 2010.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Computer and Information Sciences, University of HyderabadHyderabadIndia

Personalised recommendations