Skip to main content

Finite Element Simulation of Thermoelastic Effective Properties of Periodic Masonry with Porous Bricks

  • Chapter
  • First Online:
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 59))

Abstract

In this work an integrated approach has been proposed for the determination of the effective mechanical and temperature properties of thermoelastic periodic brick masonry wall with various porous structures. According to the classical method of determining effective moduli of composites, in order to describe internal micro- or macrostructure, we consider a representative volume cell, which enables us to describe effective properties of the equivalent homogeneous anisotropic material. The problems for representative cells are simulated and analyzed as thermoelastic boundary value problems, using special programs in APDL language for ANSYS finite element package. The post processing of the solution gives averaged characteristics of the stress–strain state and thermal flux fields that allow computing the effective moduli of the composite. The proposed method has been applied to several examples of periodic masonry with porous, hollow and porous–hollow bricks. A periodic part of masonry with porous, hollow and porous–hollow bricks was chosen as a representative cell with thermoelastic tetrahedral and hexahedral finite elements. In order to take into account the porosity of the bricks in the masonry, using similar approaches we have preliminary solved at the microlevel the problems of the effective moduli detection for the porous bricks as thermoelastic composite bodies with random porosity structures. After that at the macrolevel the material of porous brick was considered as a homogeneous body with its own effective properties. The results of numerical experiments showed that the structures of the representative cells and porosity could significantly affect the values of the effective moduli for the considered brick masonry walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addessi, D., Mastrandrea, A., Sacco, E.: An equilibrated macro-element for nonlinear analysis of masonry structures. Eng. Struct. 70, 82–93 (2014)

    Article  Google Scholar 

  2. ANSYS Rel. 11.0. Elements Reference. SAS IP Inc. Canonsburg (2007)

    Google Scholar 

  3. Anthoine, A.: Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Struct. 32(2), 137–163 (1995)

    Article  MATH  Google Scholar 

  4. Anthoine, A.: Homogenization of periodic masonry: plane stress, generalized plane strain or 3D modelling? Commun. Numer. Methods Eng. 13, 319–326 (1997)

    Article  MATH  Google Scholar 

  5. Bati, S.B., Ranocchiai, G., Rovero, L.: Suitability of micro- mechnical model for elastic analysis of masonry. J. Eng. Mech. 125(8), 922–929 (1999)

    Article  Google Scholar 

  6. Carbone, V.I., Codegone, M.: Homogenization process of stratified masonry. Math. Comput. Model. 42, 375–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cecchi, A., Milani, G., Tralli, A.: Out-of-plane loaded CFRP reinforced masonry walls: mechanical characteristics by homogenization procedures. Compos. Sci. Technol. 65, 1480–1500 (2005)

    Article  Google Scholar 

  8. Cecchi, A., Rizzi, N.L.: Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids Struct. 38(1), 29–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen, R.M.: Mechanics of Composite Materials, pp. 1–348. Krieger Publishing Company (1991)

    Google Scholar 

  10. Cluni, F., Gusella, V.: Homogenization of non-periodic masonry structures. Int. J. Solids Struct. 41, 1911–1923 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kumar, N., Lambadi, H., Pandey, M., Rajagopal, A.: Homogenization of periodic masonry using self-consistent scheme and finite element method. Int. J. Comput. Methods Eng. Sci. Mech. 17(1), 7–21 (2016)

    Google Scholar 

  12. Nasedkin, A.V., Nasedkina, A.A.: Finite element modeling and computer design of porous composites. In: Hellmich, C., Pichler, B., Adam, D. (eds.) Poromechanics V. Proceedings of the Fifth Biot Conference on Poromechanics, July 10–12, 2013, pp. 608–617. Publ. ASCE, Vienna, Austria (2013)

    Google Scholar 

  13. Nasedkin, A.V., Nasedkina, A.A.: Finite element modeling of coupled problems: textbook, pp. 1–174. Southern Federal University Publ., Rostov-on-Don (2015)

    Google Scholar 

  14. Nasedkin, A.V., Nasedkina, A.A., Rajagopal, A., Remizov, V.V.: Some finite element approaches for modeling of anisotropic thermoelastic mixture and periodic composites with internal microstructure. In: Pelekasis, N., Stavroulakis, G. (eds.) Proceedings VIII GRACM International Congress Computational Mechanics, 12–15 July 2015, pp. 1–10. University Thessaly Publ, Volos, Greece (2015)

    Google Scholar 

  15. Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoelastic composites with account for their microstructure. Vycisl. meh. splos. sred—Comput. Contin. Mech. 7(1), 100–109 (2014)

    Google Scholar 

  16. Nasedkina, A.A., Rajagopal, A.: Finite element homogenization of periodic block masonry by the effective moduli method. In: Parinov, I.A., Chang, S.-H., Jani, M.A. (eds.) Advanced Materials—Techniques, Physics, Mechanics and Applications, Series Springer Proceedings in Physics. Springer, Heidelberg, New York, Dordrecht, London (2017) [submitted for publication]

    Google Scholar 

  17. Pande, G.N., Liang, J.X., Middleton, J.: Equivalent elastic moduli for brick masonry. Comput. Geotech. 8(3), 243–265 (1989)

    Article  Google Scholar 

  18. Pietruszczak, S., Niu, X.: A mathematical description of macroscopic behaviour of brick masonry. Int. J. Solids Struct. 29(5), 531–546 (1992)

    Article  MATH  Google Scholar 

  19. Quinteros, R.D., Oller, S., Nallim, L.G.: Nonlinear homogenization techniques to solve masonry structures problems. Compos. Struct. 94(2), 724–730 (2012)

    Article  Google Scholar 

  20. Sacco, E.: A nonlinear homogenization procedure for periodic masonry. Eur. J. Mech. A Solids. 28(2), 209–222 (2009)

    Article  MATH  Google Scholar 

  21. Shieh-Beygi, B., Pietruszczak, S.: Numerical analysis of structural masonry: mesoscale approach. Comput. Struct. 86, 1958–1973 (2008)

    Article  Google Scholar 

  22. Sýkora, J.: Krejc̆í T., Kruis J., S̆ejnoha M. Computational homogenization of non-stationary transport processes in masonry structures. J. Comput. Appl. Math. 236, 4745–4755 (2012)

    Article  MATH  Google Scholar 

  23. Wang, G., Li, S., Nguyen, H., Sitar, N.: Effective elastic stiffness for periodic masonry structures via eigenstrain homogenization. J. Mater. Civ. Eng. 19(3), 269–277 (2007)

    Article  Google Scholar 

  24. Wu, C., Hao, H.: Derivation of 3D masonry properties using numerical homogenization technique. Int. J. Numer. Methods Eng. 66(11), 1717–1737 (2006)

    Article  MATH  Google Scholar 

  25. Zucchini, A., Lourenço, P.B.: A micro-mechanical model for the homogenisation of masonry. Int. J. Solids Struct. 39(12), 3233–3255 (2002)

    Article  MATH  Google Scholar 

  26. Zucchini, A., Lourenço, P.B.: Mechanics of masonry in compression: results from a homogenisation approach. Comput. Struct. 85, 193–204 (2007)

    Article  Google Scholar 

  27. Zucchini, A., Lourenço, P.B.: A micro-mechanical homogenisation model for masonry: application to shear walls. Int. J. Solids Struct. 46, 871–886 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Russian Scientific Foundation (RSCF) for its support by Project 15-19-10008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nasedkin, A.V., Nasedkina, A.A., Rajagopal, A. (2017). Finite Element Simulation of Thermoelastic Effective Properties of Periodic Masonry with Porous Bricks. In: Sumbatyan, M. (eds) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials . Advanced Structured Materials, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-3797-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3797-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3796-2

  • Online ISBN: 978-981-10-3797-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics