Skip to main content

Inner Ear Organoids: Recapitulating Inner Ear Development in 3D Culture

  • Chapter
  • First Online:
  • 1070 Accesses

Abstract

The inner ear contains sensory epithelia composed of mechanosensitive hair cells, supporting cells, and sensory neurons that work in concert to detect sound and positional information and transmit those signals to the brain. Within the backdrop of embryogenesis, inner ear development follows an intricate pathway of signaling cues and morphological changes, leading to its complex final three-dimensional (3D) structure. Application of various small molecules and recombinant proteins to mouse embryonic stem cells at specific time points in vitro has enabled recapitulation of developmental cues with subsequent formation of inner ear organoids. This has resulted in a model system of inner ear development that is easily derived, manipulated, and analyzed. These organoids contain functional mechanosensitive hair cells, supporting cells, and sensory neurons, which phenocopy functional components of the inner ear responsible for detection of positional information. The potential applications of this system include investigation of inner ear development, disease modeling, drug screening, and therapy development. This chapter highlights the process of in vivo inner ear development, the rationale and process behind inner ear organoid formation, and potential applications and limitations of this in vitro model system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahrens K, Schlosser G (2005) Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Dev Biol 288(1):40–59

    Article  CAS  PubMed  Google Scholar 

  • Bailey AP, Streit A (2005) Sensory organs: making and breaking the pre-placodal region. In: Current topics in developmental biology, vol 72. Academic, San Diego/London, pp 167–204

    Google Scholar 

  • Baker C, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232:1–61

    Article  CAS  PubMed  Google Scholar 

  • Bhat N, Kwon H, Riley B (2013) A gene network that coordinates preplacodal competence and neural crest specification in zebrafish. Dev Biol 373(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Bouchard M, Andersson E, Novitch B, Muhr J (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis 38(3):105–109

    Article  CAS  PubMed  Google Scholar 

  • Breneman K, Brownell W, Rabbitt R (2009) Hair cell bundles: flexoelectric motors of the inner ear. PLoS One 4(4):e5201

    Article  PubMed  PubMed Central  Google Scholar 

  • Brugmann S, Pandur P, Kenyon K, Pignoni F, Moody S (2004) Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131:5871–5881

    Article  CAS  PubMed  Google Scholar 

  • Chambers S, Fasano C, Papapetrou E (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Nanotechnol 27:275–280

    CAS  Google Scholar 

  • Chen W, Jongkamonwiwat N, Abbas L et al (2012) Restoration of auditory evodked responses by human ES-cell-derived otic progenitors. Nature 490:278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi N, Epstein JA (2002) Getting your Pax straight: PAX proteins in development and disease. Trends Genet 18(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Christophorou N, Bailey A, Hanson S, Streit A (2009) Activation of Six1 target genes is required for sensory placode formation. Dev Biol 336:327–336

    Article  CAS  PubMed  Google Scholar 

  • Christophorou N, Mende M, Lleras-Forero L, Grocott T, Streit A (2010) Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Dev Biol 345:180–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekkers J, Wiegerinck C, de Jonge H et al (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19(7):939–948

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Regan S, Xia Y, Oostrom L, Cowan C, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-Organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532

    Article  CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Esterberg R, Fritz A (2009) dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity. Dev Biol 325(1):189–199

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Freter S, Muta Y, Mak S, Rinkwitz S, Ladher R (2008) Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. Development 135:3415–3424

    Article  CAS  PubMed  Google Scholar 

  • Géléoc G, Holt J (2014) Sound strategies for hearing restoration. Science 344(6184):596–605

    Article  Google Scholar 

  • Glavic A, Honoré SM, Feijóo CG, Bastidas F, Allende ML, Mayor R (2004) Role of BMP signaling and the homeoprotein Iroquois in the specification of the cranial placodal field. Dev Biol 272(1):89–103

    Article  CAS  PubMed  Google Scholar 

  • Groves A, Bronner-Fraser M (2000) Competence, specification and commitment in otic placode induction. Development 139:3489–3499

    Google Scholar 

  • Groves A, Fekete D (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:1175–1187

    Article  Google Scholar 

  • Kalinec F (2005) High-throughput screening of ototoxic and otoprotective pharmacologic drugs. Volta Rev 105(3):383–406

    Google Scholar 

  • Kalinec G, Webster P, Lim D, Kalinec F (2003) A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol 8:177–189

    Article  CAS  PubMed  Google Scholar 

  • Koehler K, Hashino E (2014) 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 9(6):1229–1244

    Article  CAS  PubMed  Google Scholar 

  • Koehler K, Mikosz A, Molosh A, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon H, Bhat N, Sweet E, Cornell R, Riley B (2010) Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet 6(9):e1001133

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladher R, Anakwe K, Gurney A, Schoenwolf G, Francis-West P (2000) Identification of synergistic signals initiating inner ear development. Science 290:1965–1967

    Article  CAS  PubMed  Google Scholar 

  • Ladher R, O'Neill P, Begbie J (2010) From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 137:1777–1785

    Article  CAS  PubMed  Google Scholar 

  • Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA (2007) PAX genes: Roles in development, pathophysiology, and cancer. Biochem Pharmacol 73(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Leung A, Morest D, Li J (2013) Differential BMP signaling controls formation and differentiation of multipotent preplacodal ectoderm progenitors from human embryonic stem cells. Dev Biol 379(2):208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Xue J, Peterson E (2008) Architecture of the mouse utricle: macular organization and hair bundle heights. J Neurophysiol 99:718–733

    Article  CAS  PubMed  Google Scholar 

  • Li H, Roblin G, Liu H, Heller S (2003) Generation of hair cells by stepwise differentiation of embryonic stem cells. PNAS 100(23):13,495–13,500

    Article  CAS  Google Scholar 

  • Li M, Suzuki K, Kim N, Liu G, Belmonte J (2013) A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem 289(8):4594–4599

    Article  PubMed  PubMed Central  Google Scholar 

  • Litsiou A, Hanson S, Streit A (2005) A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development 132:4051–4062

    Article  CAS  PubMed  Google Scholar 

  • Lysakowski A, Gaboyard-Niay S, Calin-Jageman I, Chatlani S, Price S, Eatock R (2011) molecular microdomains in a sensory terminal, the vestibular calyx ending. J Neurosci 31(27):10,101–10,114

    Article  CAS  Google Scholar 

  • Meyers J, MacDonald R, Duggan A et al (2003) Lighting up the senses: FM1–43 loading of sensory cells through nonselective ion channels. J Neurosci 23(10):4054–4065

    CAS  PubMed  Google Scholar 

  • Misui K, Tokuzawa Y, Itoh H, Segawa K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 30(113):631–642

    Google Scholar 

  • Muguruma K, Nishiyama A, Ono Y et al (2010) Ontogeny-recapitulating generation and tissue integration of ES cell–derived Purkinje cells. Nat Neurosci 13:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Müller U, Barr-Gillespie P (2015) New treatment options for hearing loss. Nat Rev Drug Discov 14:346–365

    Article  PubMed  Google Scholar 

  • Nakano T, Ando S, Takata N (2012) Self-formation of optic cups and storable stratifed neural retina from humans ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  • Oesterle E, Campbell S, Taylor R, Forge A, Hume C (2008) Sox2 and Jagged1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89

    Article  PubMed  Google Scholar 

  • Ohyama T, Mohamed O, Taketo M, Dufort D, Groves A (2006) Wnt signals mediate a fate decision between otic placode and epidermis. Development 133:865–875

    Article  CAS  PubMed  Google Scholar 

  • Oshima K, Shin K, Diensthuber M, Peng A, Ricci A, Heller S (2010) Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141(4):704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y-H (2015) Stem cell therapy for sensorineural hearing loss, still alive? J Audiol Otol 19(2):63–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieper M, Ahrens K, Rink E, Peter A, Schlosser G (2012) Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Development 139(6):1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Reichert S, Randall R, Hill C (2013) A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development 140:4435–4444

    Article  CAS  PubMed  Google Scholar 

  • Ruf R, Xu P, Silvius D, Otto E, Beekmann F, Muerb U et al (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1–DNA complexes. Proc Natl Acad Sci 101:8090–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B (2013) Gene transfer in inner ear cells: a challenging race. Gene Ther 20:237–247

    Article  CAS  PubMed  Google Scholar 

  • Sai X, Ladher R (2015) Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol 6(19):1–8

    CAS  Google Scholar 

  • Sai X, Yonemura S, Ladher R (2014) Junctionally restricted RhoA activity is necessary for apical constriction during phase 2 inner ear placode invagination. Dev Biol 394:206–216

    Article  CAS  PubMed  Google Scholar 

  • Saint-Jeannet J, Moody S (2014) Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 389(1):13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasai Y, Eiraku M, Hidetaka S (2012) In vitro organogenesis in three dimensions: self-organising stem cells. Development 139(22):4111–4121

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H et al (2010) Conserved expression of mouse Six1 in the pre-placodal region (PPR) and iden- tification of an enhancer for the rostral PPR. Dev Biol 344:158–171

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Vries R, Snippert H (2009) Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  • Schimmang T (2007) Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51:473–481

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294:303–351

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G (2014) Early embryonic specification of vertebrate cranial placodes. Dev Biol 3:349–363

    CAS  Google Scholar 

  • Schlosser G, Ahrens K (2004) Molecular anatomy of placode development in Xenopus laevis. Dev Biol 271(2):439–466

    Article  CAS  PubMed  Google Scholar 

  • Seiler M, Aramant R, Thomas B, Peng Q, Sadda S, Keirstead H (2010) Visual restoration and transplant connectivity in degernerate rats implanted with retinal progenitor sheets. Eur J Neurosci 31:508–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit A (2007) The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol 51(6–7):447–461. doi:10.1387/ijdb.072327as

    Article  CAS  PubMed  Google Scholar 

  • Suga H (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  PubMed  Google Scholar 

  • Urness L, Paxton C, Wang X, Schoenwolf G, Mansour S (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 340:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendrell V, Vázquez-Echeverría C, López-Hernández I, Alons B, Marinez S, Pujades C et al (2013) Roles of Wnt8a during formation and patterning of the mouse inner ear. Mech Dev 130:160–168

    Article  CAS  PubMed  Google Scholar 

  • Warchol M, Richardson G (2009) Expression of the pax2 transcription factor is associated with vestibular phenotype in the avian inner ear. Dev Neurobiol 69:191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright T, Mansour S (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Sha S, McLaren J, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res 158(1–2):165–178

    Article  CAS  PubMed  Google Scholar 

  • Xinaris C, Brizi V, Remuzzi G (2015) Organoid models and applications in biomedical research. Nephron 130:191–199

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Atsushi Shimomura for the schematic drawing and Rachel DeJonge and Andrew Mikosz for some of the image data. This work was supported by a National Institutes of Health grant R01 DC013294 (to E.H.), an Indiana Clinical and Translational Research Institute predoctoral fellowship (to A.N.E.), and a Centralized Otolaryngology Research Effort (CORE) grant (to R.F.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Hashino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Elghouche, A.N., Nelson, R.F., Hashino, E. (2017). Inner Ear Organoids: Recapitulating Inner Ear Development in 3D Culture. In: Tsuji, T. (eds) Organ Regeneration Based on Developmental Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3768-9_4

Download citation

Publish with us

Policies and ethics