Skip to main content

Modeling Deformable Bodies Using Discrete Systems with Centroid-Based Propagating Interaction: Fracture and Crack Evolution

  • Chapter
  • First Online:
Mathematical Modelling in Solid Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 69))

Abstract

We use a simple discrete system in order to model deformation and fracture within the same theoretical and numerical framework. The model displays a rich behavior, accounting for different fracture phenomena, and in particular for crack formation and growth. A comparison with standard Finite Element simulations and with the basic Griffith theory of fracture is provided. Moreover, an ‘almost steady’ state, i.e. a long apparent equilibrium followed by an abrupt crack growth, is obtained by suitably parameterizing the system. The model can be easily generalized to higher order interactions corresponding, in the homogenized limit, to higher gradient continuum theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Google Scholar 

  2. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Google Scholar 

  3. Ching, W.Y., Rulis, P., Misra, A.: Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomaterialia 5(8), 3067–3075 (2009)

    Google Scholar 

  4. Kulkarni, M.G., Pal, S., Kubair, D.V.: Mode-3 spontaneous crack propagation in unsymmetric functionally graded materials. Int. J. Solids Struct. 44(1), 229–241 (2007)

    Google Scholar 

  5. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 94(10), 862–877 (2014)

    Google Scholar 

  6. Della Corte, A., Battista, A.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)

    Google Scholar 

  7. Battista, A., Rosa, L., dell’Erba, R., Greco, L.: Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids (2016). doi:10.1177/1081286516657889

  8. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Google Scholar 

  9. dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Google Scholar 

  10. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (pp. rspa-2008). The Royal Society. (2009)

    Google Scholar 

  11. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4–5), 623–638 (2015)

    Google Scholar 

  12. Sunyk, R., Steinmann, P.: On higher gradients in continuum-atomistic modelling. Int. J. Solids Struct. 40(24), 6877–6896 (2003)

    Google Scholar 

  13. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer Science & Business Media (2012)

    Google Scholar 

  14. Germain, P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Google Scholar 

  15. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Google Scholar 

  16. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

    Google Scholar 

  17. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Google Scholar 

  18. Placidi, L., Faria, S.H., Hutter, K.: On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets. Ann. Glaciol. 39(1), 49–52 (2004)

    Google Scholar 

  19. Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., Strochkov, S.E.: The spectrum of natural oscillations of an array of micro-or nanospheres on an elastic substrate. In: Doklady Physics, vol. 52, pp. 699–702. MAIK Nauka/Interperiodica (2007)

    Google Scholar 

  20. Madeo, A., Placidi, L., Rosi, G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Research in Nondestructive Evaluation 25(2), 99–124 (2014)

    Google Scholar 

  21. Eremeyev, V.A.: Acceleration waves in micropolar elastic media. In: Doklady Physics, vol.  50, pp. 204–206. MAIK Nauka/Interperiodica (2005)

    Google Scholar 

  22. Chang, C.S., Misra, A.: Application of uniform strain theory to heterogeneous granular solids. J. Eng. Mech. 116(10), 2310–2328 (1990)

    Google Scholar 

  23. Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response. Appl. Mech. Rev. 67(6), 21 (2016)

    Google Scholar 

  24. Thiagarajan, G., Misra, A.: Fracture simulation for anisotropic materials using a virtual internal bond model. Int. J. Solids Struct. 41(11), 2919–2938 (2004)

    Google Scholar 

  25. Koh, S.J.A., Lee, H.P., Lu, C., Cheng, Q.H.: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects. Phys. Rev. B 72(8), 085414 (2005)

    Google Scholar 

  26. Misra, A., Roberts, L.A., Levorson, S.M.: Reliability analysis of drilled shaft behavior using finite difference method and Monte Carlo simulation. Geotech. Geol. Eng. 25(1), 65–77 (2007)

    Google Scholar 

  27. Kim, S.P., Van Duin, A.C., Shenoy, V.B.: Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study. J. Power Sources 196(20), 8590–8597 (2011)

    Google Scholar 

  28. Tuckerman, M.E.: Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys.: Conden. Matter 14(50), R1297 (2002)

    Google Scholar 

  29. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045 (1992)

    Google Scholar 

  30. Allen, M.P.: Introduction to molecular dynamics simulation. Comput. Soft Matter Synth. Polym. Proteins 23, 1–28 (2004)

    Google Scholar 

  31. Levitan, E.S.: Forced Oscillation of a Spring-Mass System having Combined Coulomb and Viscous Damping. J. Acoust. Soc. Am. 32(10), 1265–1269 (1960)

    Google Scholar 

  32. Kot, M., Nagahashi, H., Szymczak, P.: Elastic moduli of simple mass spring models. Vis. Comput. 31(10), 1339–1350 (2015)

    Google Scholar 

  33. Bishop, R.E.D., Johnson, D.C.: The Mechanics of Vibration. Cambridge University Press (2011)

    Google Scholar 

  34. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Google Scholar 

  35. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng. 197(33), 2976–2988 (2008)

    Google Scholar 

  36. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Google Scholar 

  37. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28(1–2), 139–156 (2016)

    Google Scholar 

  38. Toklu, Y.C.: Nonlinear analysis of trusses through energy minimization. Comput. Struct. 82(20), 1581–1589 (2004)

    Google Scholar 

  39. Temür, R., Türkan, Y.S., Toklu, Y.C.: Geometrically nonlinear analysis of trusses using particle swarm optimization. In: Recent Advances in Swarm Intelligence and Evolutionary Computation, pp. 283–300. Springer International Publishing (2015)

    Google Scholar 

  40. Kaveh, A., Talatahari, S.: Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization. In: Harmony Search Algorithms for Structural Design Optimization, pp. 159–198. Springer Berlin Heidelberg (2009)

    Google Scholar 

  41. Clerc, M.: Particle Swarm Optimization, vol.  93. John Wiley & Sons (2010)

    Google Scholar 

  42. Vaz Jr., M., Cardoso, E.L., Stahlschmidt, J.: Particle swarm optimization and identification of inelastic material parameters. Eng. Comput. 30(7), 936–960 (2013)

    Google Scholar 

  43. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008)

    Google Scholar 

  44. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Models Methods Appl. Sci. 22(supp01), 1140006 (2012)

    Google Scholar 

  45. Bellomo, N., Dogbe, C.: On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models Methods Appl. Sci. 18(supp01), 1317–1345 (2008)

    Google Scholar 

  46. Bellomo, N., Knopoff, D., Soler, J.: On the difficult interplay between life, “complexity”, and mathematical sciences. Math. Models Methods Appl. Sci. 23(10), 1861–1913 (2013)

    Google Scholar 

  47. Berrimi, S., Messaoudi, S.A.: Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electron. J. Differ. Eq. 88(2004), 1–10 (2004)

    Google Scholar 

  48. Berrimi, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear analysis: theory. Methods Appl. 64(10), 2314–2331 (2006)

    Google Scholar 

  49. Messaoudi, S.A., Tatar, N.E.: Exponential and polynomial decay for a quasilinear viscoelastic equation. Nonlinear analysis: theory. Methods Appl. 68(4), 785–793 (2008)

    Google Scholar 

  50. Liang, F., Gao, H.: Exponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping. Bound. Value Prob. 2011(1), 1 (2011)

    Google Scholar 

  51. Sih, G.C.: Mechanics of Fracture Initiation and Propagation: Surface and Volume Energy Density Applied as Failure Criterion, vol. 11. Springer Science & Business Media (2012)

    Google Scholar 

  52. Luongo, A.: A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures. Thin-Walled Struct. 48(10), 744–751 (2010)

    Google Scholar 

  53. Luongo, A.: On the use of the multiple scale method in solving ‘difficult’bifurcation problems. Mathematics and Mechanics of Solids (2015). doi:10.1177/1081286515616053

  54. Luongo, A.: Mode localization by structural imperfections in one-dimensional continuous systems. J. Sound Vib. 155(2), 249–271 (1992)

    Google Scholar 

  55. Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27(1–2), 261–285 (2015)

    Google Scholar 

  56. Rizzi, N.L., Varano, V., Gabriele, S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin-Walled Struct. 68, 124–134 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco dell’Isola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Della Corte, A., Battista, A., dell’Isola, F., Giorgio, I. (2017). Modeling Deformable Bodies Using Discrete Systems with Centroid-Based Propagating Interaction: Fracture and Crack Evolution. In: dell'Isola, F., Sofonea, M., Steigmann, D. (eds) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-10-3764-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3764-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3763-4

  • Online ISBN: 978-981-10-3764-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics