Skip to main content

Identification of Two-Dimensional Pantographic Structures with a Linear D4 Orthotropic Second Gradient Elastic Model Accounting for External Bulk Double Forces

  • Chapter
  • First Online:
Mathematical Modelling in Solid Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 69))

Abstract

The present paper deals with the identification of the nine constitutive parameters appearing in the strain energy density of a linear elastic second gradient D4 orthotropic two-dimensional continuum model accounting for an external bulk double force \(m^{ext}\). The aim is to specialize the model for the description of pantographic fabrics, which show such a kind of anisotropy. Analytical solutions for model problems, which are here referred to as the heavy sheet, the non-conventional bending and the trapezoidal cases are recalled from a previous paper and further elaborated in order to perform gedanken experiments. We completely characterize the set of nine constitutive parameters in terms of the materials the fibers are made of (i.e. of the Young’s modulus of the fiber materials), of their cross section (i.e. of the area and of the moment of inertia of the fiber cross sections), of the internal rotational spring positioned at each intersection point between the two families of fibers and of the pitch, i.e. the distance between adjacent pivots. Finally, the remarkable form of the strain energy, derived in terms of the displacement field, is shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibert, J.-J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aminpour, H., Rizzi, N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aminpour, H., Rizzi, N.: On the continuum modelling of carbon nano tubes. Civil-Comp Proceedings, vol. 08 (2015)

    Google Scholar 

  4. Aminpour, H., Rizzi, N.: On the modelling of carbon nano tubes as generalized continua. Adv. Struct. Mater. 42(1), 15–35 (2016)

    Article  Google Scholar 

  5. Aminpour, H., Rizzi, N., Salerno, G.: A one-dimensional beam model for single-wall carbon nano tube column buckling. In: Civil-Comp Proceedings, vol. 106 (2014)

    Google Scholar 

  6. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Article  Google Scholar 

  7. Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids. Struct. 69–70, 195–206 (2015). doi:10.1016/j.ijsolstr.2015.04.036

  9. Baraldi, D., Reccia, E., Cazzani, A., Cecchi, A.: Comparative analysis of numerical discrete and finite element models: the case of in-plane loaded periodic brickwork. Comp. Mech. Comput. Appl. 4(4), 319–344 (2013)

    Article  Google Scholar 

  10. Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)

    Article  MATH  Google Scholar 

  11. Bilotta, A., Turco, E.: A numerical study on the solution of the Cauchy problem in elasticity. Int. J. Solids Struct. 46(25–26), 4451–4477 (2009)

    Article  MATH  Google Scholar 

  12. Cazzani, A., Ruge, P.: Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Article  Google Scholar 

  13. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cazzani, A., Malagù, M., & Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  15. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  17. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  18. Dell’Isola, F., Andreaus, U. and Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola, Mechanics and Mathematics of Solids (MMS), vol. 20, p. 887–928 (2015)

    Google Scholar 

  19. Dell’Isola, F., Gouin, H., Seppecher, P.: Radius and surface tension of microscopic bubbles by second gradient theory. Comptes Rendus de l’Academie de Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie 320(6), 211–216 (1995)

    MATH  Google Scholar 

  20. Dell’Isola, F.G., Rotoli, G.: Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech. Res. Commun. 22(5), 485–490 (1995)

    Article  MATH  Google Scholar 

  21. Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences, Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)

    MATH  Google Scholar 

  22. Dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)

    Article  Google Scholar 

  24. Garusi, E., Tralli, A., Cazzani, A.: An unsymmetric stress formulation for reissner-mindlin plates: a simple and locking-free rectangular element. Int. J. Comput. Eng. Sci. 5(3), 589–618 (2004)

    Article  Google Scholar 

  25. Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16(1), 87–108 (2012)

    Article  Google Scholar 

  26. Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  27. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MATH  Google Scholar 

  28. Mindlin, R.D.: Micro-structure in Linear Elasticity, Department of Civil Engineering, vol. 27. Columbia University New York, New York (1964)

    Google Scholar 

  29. Misra, A., Huang, S.: Micromechanical stress-displacement model for rough interfaces: effect of asperity contact orientation on closure and shear behavior. Int. J. Solids Struct. 49(1), 111–120 (2012)

    Article  Google Scholar 

  30. Misra, A., Parthasarathy, R., Singh, V., Spencer, P.: Micro-poromechanics model of fluid-saturated chemically active fibrous media. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 95(2), 215–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1–2), 63–82 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  MATH  Google Scholar 

  33. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Science & Business Media (2012)

    Google Scholar 

  34. Misra, A., Singh, V.: Nonlinear granular micromechanics model for multi-axial rate-dependent behavior, 2014. Int. J. Solids Struct. 51(13), 2272–2282 (2014)

    Article  Google Scholar 

  35. Pideri, Catherine, Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66, 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Placidi L., Andreaus U., Giorgio I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. ISSN: 0022-0833 (2017) doi:10.1007/s10665-016-9856-8

  38. Sansour, C., Skatulla, S.: A strain gradient generalized continuum approach for modelling elastic scale effects. Comput. Methods Appl. Mech. Eng. 198(15), 1401–1412 (2009)

    Article  MATH  Google Scholar 

  39. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift fur Angewandte Mathematik und Physik, vol. 67(3), Article number 53 (2016)

    Google Scholar 

  40. Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 96, pp. 1268–1279 (2016). doi:10.1002/zamm.201600066

  41. Selvadurai, A.P.S.: Plane strain problems in second-order elasticity theory. Int. J. Non-Linear Mech. 8(6), 551–563 (1973)

    Article  MATH  Google Scholar 

  42. Seppecher, P., Alibert, J.-J., Dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions, J. Phys. Conf. Ser. vol. 319(1), 13 p (2011)

    Google Scholar 

  43. Presta, F., Hendy, C.R., Turco, E.: Numerical validation of simplified theories for design rules of transversely stiffened plate girders. Struct. Eng. 86(21), 37–46 (2008)

    Google Scholar 

  44. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization á la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  45. Steigmann, D.J.: Linear theory for the bending and extension of a thin, residually stressed, fiber-reinforced lamina. Int. J. Eng. Sci. 47(11–12), 1367–1378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica/Lixue Xuebao 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, Y., Ching, W.Y., Misra, A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  48. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

  49. Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46(2), 440–454 (2009)

    Article  MATH  Google Scholar 

  50. Placidi, L., Barchiesi, E., Battista, A., An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations, Proceedings of the ETAMM2016 conference EMERGING TRENDS IN APPLIED MATHEMATICS AND MECHANICS, May 30 - June 3, 2016, Perpignan, France

    Google Scholar 

  51. Nodelman, U., Allen, C., Perry, J.: Stanford encyclopedia of philosophy (2003)

    Google Scholar 

  52. Cohen, M.: Simultaneity and Einstein’s Gedankenexperiment. Philosophy 64(249), 391–396 (1989)

    Article  Google Scholar 

  53. Abo-el-nour, N., Hamdan, A.M., Almarashi, A.A., and Battista, A.: The mathematical modeling for bulk acoustic wave propagation velocities in transversely isotropic piezoelectric materials. Mathematics and Mechanics of Solids (2015). doi:10.1177/1081286515613333

  54. Silvestre, N., Camotim, D.: Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Struct. 40(9), 791–820 (2002)

    Article  Google Scholar 

  55. Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Piccardo, G., Ranzi, G., Luongo, A.: A direct approach for the evaluation of the conventional modes within the GBT formulation. Thin-Walled Struct. 74, 133–145 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Placidi, L., Barchiesi, E., Della Corte, A. (2017). Identification of Two-Dimensional Pantographic Structures with a Linear D4 Orthotropic Second Gradient Elastic Model Accounting for External Bulk Double Forces. In: dell'Isola, F., Sofonea, M., Steigmann, D. (eds) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-10-3764-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3764-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3763-4

  • Online ISBN: 978-981-10-3764-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics