Skip to main content

New Thoughts in Nonlinear Elasticity Theory via Hencky’s Logarithmic Strain Tensor

  • Chapter
  • First Online:
  • 1416 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 69))

Abstract

We consider the two logarithmic strain measures \(\omega _{\mathrm {iso}}= ||{{\mathrm{dev}}}_n \log U ||\) and \(\omega _{\mathrm {vol}}= |{{\mathrm{tr}}}(\log U) |\), which are isotropic invariants of the Hencky strain tensor \(\log U = \log (F^TF)\), and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group \({{\mathrm{GL}}}(n)\). Here, F is the deformation gradient, \(U=\sqrt{F^TF}\) is the right Biot-stretch tensor, \(\log \) denotes the principal matrix logarithm, \(||\,.\, ||\) is the Frobenius matrix norm, \({{\mathrm{tr}}}\) is the trace operator and is the n-dimensional deviator of \(X\in \mathbb {R}^{n\times n}\). This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor \(\varepsilon ={{\mathrm{sym}}}\nabla u\), which is the symmetric part of the displacement gradient \(\nabla u\), and reveals a close geometric relation between the classical quadratic isotropic energy potential in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor R, where \(F=RU\) is the polar decomposition of F.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Similarly, a spatial or Eulerian strain tensor \({\widehat{E}}(V)\) depends on the left Biot-stretch tensor \(V=\sqrt{FF^T}\) (cf. [14]).

  2. 2.

    Loosely speaking, we use the term “a logarithm of \(A\in {{\mathrm{GL}}}^{\!+}(n)\)” to denote any (real) solution X of the matrix equation \(\exp X = A\).

References

  1. Andruchow, E., Larotonda, G., Recht, L., Varela, A.: The left invariant metric in the general linear group. J. Geom. Phys. 86, 241–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batra, R.C.: Linear constitutive relations in isotropic finite elasticity. J. Elast. 51(3), 243–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36(3), 421–432 (2001)

    Article  MATH  Google Scholar 

  4. Becker, G.F.: The finite elastic stress-strain function. Am. J. Sci. 46, 337–356 (1893). https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/becker_latex_new1893.pdf

  5. Bertram, A.: Elasticity and Plasticity of Large Deformations. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  6. Bertram, A., Böhlke, T., Šilhavỳ, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elast. 86(3), 235–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bîrsan, M., Neff, P., Lankeit, J.: Sum of squared logarithms - an inequality relating positive definite matrices and their matrix logarithm. J. Inequalities Appl. 2013(1), 1–16 (2013). doi:10.1186/1029-242X-2013-168

    Article  MathSciNet  MATH  Google Scholar 

  8. Borisov, L., Neff, P., Sra, S., Thiel, C.: The sum of squared logarithms inequality in arbitrary dimensions. to appear in Linear Algebra Appl. (2015). arXiv:1508.04039

  9. Bouby, C., Fortuné, D., Pietraszkiewicz, W., Vallée, C.: Direct determination of the rotation in the polar decomposition of the deformation gradient by maximizing a Rayleigh quotient. Zeitschrift für Angewandte Mathematik und Mechanik 85(3), 155–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dannan, F.M., Neff, P., Thiel, C.: On the sum of squared logarithms inequality and related inequalities. to appear in JMI J. Math. Inequalities (2014). arXiv:1411.1290

  11. De Boor, C.: A naive proof of the representation theorem for isotropic, linear asymmetric stress-strain relations. J. Elast. 15(2), 225–227 (1985). doi:10.1007/BF00041995

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischle, A., Neff, P.: The geometrically nonlinear cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2d. to appear in Zeitschrift für Angewandte Mathematik und Mechanik (2015). arXiv:1507.05480

  13. Fischle, A., Neff, P.: The geometrically nonlinear cosserat micropolar shear-stretch energy. part ii: Non-classical energy-minimizing microrotations in 3d and their computational validation. Submitted (2015). arXiv:1509.06236

  14. Fosdick, R.L., Wineman, A.S.: On general measures of deformation. Acta Mech. 6(4), 275–295 (1968)

    Article  MATH  Google Scholar 

  15. Grioli, G.: Una proprieta di minimo nella cinematica delle deformazioni finite. Bollettino dell’Unione Matematica Italiana 2, 252–255 (1940)

    MathSciNet  MATH  Google Scholar 

  16. Grioli, G.: Mathematical Theory of Elastic Equilibrium (recent results). Ergebnisse der angewandten Mathematik, vol. 7. Springer, Heidelberg (1962)

    Book  MATH  Google Scholar 

  17. Hackl, K., Mielke, A., Mittenhuber, D.: Dissipation distances in multiplicative elastoplasticity. In: Wendland, W.L., Efendiev, M. (eds.) Analysis and Simulation of Multifield Problems, pp. 87–100. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Hencky, H.: Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern? Zeitschrift für Physik 55, 145–155 (1929). www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky1929.pdf

  19. Higham, N.J.: Matrix Nearness Problems and Applications. University of Manchester, Department of Mathematics, Manchester (1988)

    MATH  Google Scholar 

  20. Hill, R.: On constitutive inequalities for simple materials - I. J. Mech. Phys. Solids 11, 229–242 (1968)

    Article  MATH  Google Scholar 

  21. Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. A Math. Phys. Sci. 314, 457–472 (1970)

    Article  MATH  Google Scholar 

  22. Hill, R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech. 18, 1–75 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hopf, H., Rinow, W.: Über den Begriff der vollständigen differentialgeometrischen Fläche. Commentarii Mathematici Helvetici 3(1), 209–225 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirchhoff, G.R.: Über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien IX (1852)

    Google Scholar 

  25. Lankeit, J., Neff, P., Nakatsukasa, Y.: The minimization of matrix logarithms: on a fundamental property of the unitary polar factor. Linear Algebra Appl. 449, 28–42 (2014). doi:10.1016/j.laa.2014.02.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Martin, R.J., Neff, P.: Minimal geodesics on gl(n) for left-invariant, right-o(n)-invariant riemannian metrics. to appear in The J. Geom. Mech. (2014). arXiv:1409.7849

  27. Martins, L.C., Podio-Guidugli, P.: A variational approach to the polar decomposition theorem. Rendiconti delle sedute dell’Accademia nazionale dei Lincei 66(6), 487–493 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on \(\rm SL(d)\). In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics - Volume in Honor of the 60th Birthday of J.E. Marsden, pp. 61–90. Springer, New York (2002)

    Google Scholar 

  29. Neff, P., Eidel, B., Martin, R.J.: The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky (a new translation of Hencky’s original German articles). (2014). arXiv:1402.4027

  30. Neff, P., Eidel, B., Martin, R.J.: Geometry of logarithmic strain measures in solid mechanics. Archive for Rational Mechanics and Analysis (2016). doi:10.1007/s00205-016-1007-x. arXiv:1505.02203

  31. Neff, P., Fischle, A., Münch, I.: Symmetric Cauchy-stresses do not imply symmetric Biot-strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom. Acta Mech. 197, 19–30 (2008)

    Article  MATH  Google Scholar 

  32. Neff, P., Lankeit, J., Madeo, A.: On Grioli’s minimum property and its relation to Cauchy’s polar decomposition. Int. J. Eng. Sci. 80, 209–217 (2014)

    Article  MathSciNet  Google Scholar 

  33. Neff, P., Münch, I.: Curl bounds Grad on \({\rm SO}(3)\). ESAIM: Control Optim. Calc. Var. 14(1), 148–159 (2008)

    Google Scholar 

  34. Neff, P., Münch, I., Martin, R.J.: Rediscovering G. F. Becker’s early axiomatic deduction of a multiaxial nonlinear stress-strain relation based on logarithmic strain. to appear in Math. Mech. Solids (2014). doi:10.1177/1081286514542296. arXiv:1403.4675

  35. Neff, P., Nakatsukasa, Y., Fischle, A.: A logarithmic minimization property of the unitary polar factor in the spectral and frobenius norms. SIAM J. Matrix Anal. Appl. 35(3), 1132–1154 (2014). doi:10.1137/130909949

    Article  MathSciNet  MATH  Google Scholar 

  36. Norris, A.N.: Higher derivatives and the inverse derivative of a tensor-valued function of a tensor. Q. Appl. Math. 66, 725–741 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pompe, W., Neff, P.: On the generalised sum of squared logarithms inequality. J. Inequalities Appl. 2015(1), 1–17 (2015). doi:10.1186/s13660-015-0623-6

    Article  MathSciNet  MATH  Google Scholar 

  38. Richter, H.: Das isotrope Elastizitätsgesetz. Zeitschrift für Angewandte Mathematik und Mechanik 28(7/8), 205–209 (1948). https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/richter_isotrop_log.pdf

  39. Richter, H.: Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen. Zeitschrift für Angewandte Mathematik und Mechanik 29(3), 65–75 (1949). https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/richter_deviator_log.pdf

  40. Richter, H.: Zum Logarithmus einer Matrix. Archiv der Mathematik 2(5), 360–363 (1949). doi:10.1007/BF02036865. https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/richter_log.pdf

  41. Richter, H.: Zur Elastizitätstheorie endlicher Verformungen. Mathematische Nachrichten 8(1), 65–73 (1952)

    Google Scholar 

  42. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1. Springer, Heidelberg (1960)

    Google Scholar 

  43. Zacur, E., Bossa, M., Olmos, S.: Multivariate tensor-based morphometry with a right-invariant Riemannian distance on \({\rm {GL}}^+(n)\). J. Math. Imaging Vis. 50, 19–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Neff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Neff, P., Martin, R.J., Eidel, B. (2017). New Thoughts in Nonlinear Elasticity Theory via Hencky’s Logarithmic Strain Tensor. In: dell'Isola, F., Sofonea, M., Steigmann, D. (eds) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-10-3764-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3764-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3763-4

  • Online ISBN: 978-981-10-3764-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics