Advertisement

Tilted Dirac Cones in Two Dimensions

  • Hiroki IsobeEmail author
Chapter
  • 679 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Low symmetries of a crystal structure could allow the energy dispersion to exhibit Weyl fermions with several different velocities. The quasi-two-dimensional organic semiconductor \(\alpha \)-(BEDT-TTF)\(_2\)I\(_3\) has an anisotropic linear dispersion with a zero energy gap near its Fermi level. Since the density of states vanishes at the Fermi level, the Coulomb interaction is unscreened and long-ranged. We study the effect of the long-range Coulomb interaction and the low-energy behavior of the two-dimensional Weyl/Dirac fermions with tilted energy dispersion. The renormalization group analysis within nonrelativistic scheme reveals that the nearly logarithmic enhancement of the velocity parameters reshapes the tilted Dirac cones and changes the low-energy behavior. The suppression of the spin susceptibility at low temperatures is calculated theoretically, which well explains an NMR experiment. By taking into account of the relativistic effect, we observe the recovery of the isotropic Dirac cone and the Lorentz invariance in the low-energy limit, accompanying the Cherenkov radiation. This result applies even when the Dirac cone is strongly tilted and the velocity is negative in one direction.

Keywords

Organic conductor \(\alpha \)-(BEDT-TTF)\(_2\)I\(_3\) Tilted Dirac cone Type II Weyl semimetal 

References

  1. 1.
    A. Kobayashi, S. Katayama, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 76, 034711 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Kobayashi, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 77, 064718 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M.O. Goerbig, J.-N. Fuchs, G. Montambaux, F. Piéchon, Phys. Rev. B 78, 045415 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Katayama, A. Kobayashi, Y. Suzumura, Eur. Phys. J. B 67, 139 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527, 495 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    H. Isobe, N. Nagaosa, Phys. Rev. Lett. 116, 116803 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, H.J. Keller, Mol. Cryst. Liq. Cryst. 108, 359 (1984)CrossRefGoogle Scholar
  8. 8.
    H. Kino, T. Miyazaki, J. Phys. Soc. Jpn. 75, 034704 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Katayama, A. Kobayashi, Y. Suzumura, J. Phys. Soc. Jpn. 75, 054705 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    N. Tajima, K. Kajita, Sci. Tech. Adv. Mater. 10, 024308 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Kobayashi, S. Katayama, Y. Suzumura, Sci. Tech. Adv. Mater. 10, 024309 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Isobe, N. Nagaosa, J. Phys. Soc. Jpn. 81, 113704 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature 514, 205 (2014)ADSGoogle Scholar
  14. 14.
    M. Hirata, NMR Sturies of Massless Dirac Fermions in the Quasi-Two-Dimensional Organic Conductor \(\alpha \)-(BEDT-TTF)\(_{2}\)I\(_{3}\), Ph.D. thesis, University of Tokyo (2012)Google Scholar
  15. 15.
    J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 59, R2474 (1999)Google Scholar
  16. 16.
    D.T. Son, Phys. Rev. B 75, 235423 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012)Google Scholar
  18. 18.
    S. Teber, Phys. Rev. D 86, 025005 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    E.V. Gorbar, V.P. Gusynin, V.A. Miransky, Phys. Rev. D 64, 105028 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    J. González, F. Guinea, M. Vozmediano, Nucl. Phys. B 424, 595 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Oxford, 1984)Google Scholar
  22. 22.
    L. Van Hove, Phys. Rev. 89, 1189 (1953)ADSCrossRefGoogle Scholar
  23. 23.
    M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier, D. Basko, A. Kobayashi, G. Matsuno, K. Kanoda, Nat. Commun. 7, 12666 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    S. Chadha, H. Nielsen, Nucl. Phys. B 217, 125 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations