Skip to main content

Interacting Dirac Fermions in (3+1) Dimensions

  • Chapter
  • First Online:
Theoretical Study on Correlation Effects in Topological Matter

Part of the book series: Springer Theses ((Springer Theses))

  • 803 Accesses

Abstract

The long-range electron-electron interaction between Dirac electrons in \((3+1)\) dimensions is considered by the perturbative renormalization group analysis. When the chemical potential in Dirac energy dispersion is tuned at the band crossing point, the density of states vanishes and hence the Coulomb interaction is not screened to become a long-range force. We analyze that long-range interaction relativistically, taking into consideration of the retardation effect of the propagation of the interaction. Those massless Dirac electrons in \((3+1)\) dimensions emerge, for example, at the quantum critical point of topological phase transitions and in Weyl/Dirac semimetals. They receive logarithmic corrections in the nonrelativistic regime, where the electron’s speed v is much larger than the speed of light c; v increases logarithmically depending on the renormalization scale. In the low energies, however, the Dirac systems attain a relativistic regime \(v \approx c\), and finally the Lorentz invariance is recovered (\(v=c\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have dropped the \(\theta \) term, i.e., \(\theta \varvec{E}\cdot \varvec{B}\) (\(\theta = \pm \pi \)) in the action, which should be present in the TI phase. This term, however, can be transformed into the surface term, and the sign of \(\theta \) is determined by the time-reversal symmetry breaking on the surface [10]. The topological magnetoelectric effect is derived from this term, but this is beyond the scope of this present analysis, where only the bulk properties are discussed.

    Actually, the RG analysis does not modify the \(\theta \) term. It is natural since topological terms have discrete integer values, and we confirmed this fact from the following two methods: the perturbative calculation and the background field theory. In any case, the topological \(\theta \) term does not alter the bulk properties.

  2. 2.

    For example, we calculate the electron velocity v in Coulomb gauge. Its bare value is obtained by

    $$\begin{aligned} v_B = v\frac{Z_\text {2s}^\text {(C)}}{Z_\text {2t}^\text {(C)}} = v \left\{ 1- \frac{2g^2}{3\pi \epsilon }\frac{c^2}{v(c+v)^2} \left[ 1+2\left( \frac{v}{c} \right) +\left( \frac{v}{c} \right) ^2 - 4\left( \frac{v}{c} \right) ^3 \right] \right\} . \end{aligned}$$

    We can see that this equation is exactly the same as the previous result in Feynman gauge [Eq. (2.42)]. Thus, the running electron velocity \(v(\kappa )\) is unchanged whichever gauge we choose.

References

  1. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995)

    Google Scholar 

  2. P. Ramond, Field Theory: A Modern Primer, 2nd edn. (Addison-Wesley, Redwood City, 1990)

    MATH  Google Scholar 

  3. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  4. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012)

    Google Scholar 

  5. J. Gonzá lez, F. Guinea, M. Vozmediano, Nucl. Phys. B 424, 595 (1994)

    Google Scholar 

  6. P. Goswami, S. Chakravarty, Phys. Rev. Lett. 107, 196803 (2011)

    Article  ADS  Google Scholar 

  7. P. Hosur, S.A. Parameswaran, A. Vishwanath, Phys. Rev. Lett. 108, 046602 (2012)

    Article  ADS  Google Scholar 

  8. B. Roy, V. Juričić, I.F. Herbut, Phys. Rev. B 87, 041401 (2013)

    Article  ADS  Google Scholar 

  9. R. Shindou, S. Murakami, Phys. Rev. B 79, 045321 (2009)

    Article  ADS  Google Scholar 

  10. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  11. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)

    Google Scholar 

  12. H. Isobe, N. Nagaosa, Phys. Rev. B 86, 165127 (2012)

    Article  ADS  Google Scholar 

  13. H. Isobe, N. Nagaosa, Phys. Rev. B 87, 205138 (2013)

    Article  ADS  Google Scholar 

  14. J.C. Ward, Phys. Rev. 78, 182 (1950)

    Article  ADS  Google Scholar 

  15. Y. Takahashi, Nuovo Cimento 6, 371 (1957)

    Article  Google Scholar 

  16. C.G. Callan, Phys. Rev. D 2, 1541 (1970)

    Article  ADS  Google Scholar 

  17. K. Symanzik, Commun. Math. Phys. 18, 227 (1970)

    Article  ADS  Google Scholar 

  18. K. Symanzik, Commun. Math. Phys. 23, 49 (1971)

    Article  ADS  Google Scholar 

  19. S. Coleman, Aspects of symmetry (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  20. G.S. Adkins, Phys. Rev. D 27, 1814 (1983)

    Article  ADS  Google Scholar 

  21. P. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 11, 001 (2000)

    Article  ADS  Google Scholar 

  22. L. Fritz, J. Schmalian, M. MĂĽller, S. Sachdev, Phys. Rev. B 78, 085416 (2008)

    Article  ADS  Google Scholar 

  23. S.-Y. Xu, Y. Xia, L.A. Wray, S. Jia, F. Meier, J.H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R.J. Cava, M.Z. Hasan, Science 332, 560 (2011)

    Article  ADS  Google Scholar 

  24. T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando, T. Takahashi, Nat. Phys. 7, 840 (2011)

    Article  Google Scholar 

  25. L.S. Brown, Quantum Field Theory (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  26. X.-L. Qi, R. Li, J. Zang, S.-C. Zhang, Science 323, 1184 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Isobe .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Isobe, H. (2017). Interacting Dirac Fermions in (3+1) Dimensions. In: Theoretical Study on Correlation Effects in Topological Matter. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3743-6_2

Download citation

Publish with us

Policies and ethics